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This paper predicts the folding of a period orbit. Starting from a
general undamped two-dimensional non-autonomous dynamical
-system a Poincaré section is considered and the resulting two-
dimensional discrete system is studied near a fold bifurcation using
a new simplified definition of the rotation number. The number’s
independence from the starting point, as well as its continuity as
a function of the control parameters are demonstrated. Scaling
properties near the bifurcation are proposed and proved so that
predictions of incipient folding instabilities can be made. Finally,
the introduction of light damping in the equations of motion is
shown not to influence the new definition of the rotation number,
so that predictions can still be carried out successfully. The proposed
instability prediction method is applied successfully to a digital
simulation of Duffing’s equation, and to the experimental jump to
resonance of an electromagnetically-driven steel beam.
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The main objective of this paper is to predict the inci-
pient folding of a periodic orbit. This research is part
of a larger programme exploring possible prediction
methods for typical structurally stable modes of insta-
bility of equilibria and cycles.

Under one control parameter, equilibrium paths typi-
cally lose their stability at either a fold or a Hopf bifurca-
tion.! For the fold, a quartic frequency predictor akin
to that of the present study has been successfully applied
to computer simulations and an experimental column.
Studies of the Hopf bifurcation are aimed at predicting
the incipient fish-tailing of tankers at single-point moor-
ings.

Steady cycles, and their associated Poincaré maps,
typically lose their stability at cyclic folds, flips and Nei-
mark bifurcations. The cyclic folds are discussed in the
present paper, albeit under conditions of light damping.
The flip bifurcations, which typically trigger sub-harmo-
nic resonances of driven oscillators, are being studied
for the bilinear oscillator model of an articulated moor-
ing tower? and some encouraging results have been

0307-904X/87/02117-09/$03.00
© 1987 Butterworth & Co. (Publishers) Ltd

achieved. The Neimark bifurcation has not yet been
examined.

Starting from a general two-dimensional non-autono-
mous undamped dynamical system a Poincaré section
is considered and the resulting two-dimensional discrete
system is studied near a fold bifurcation, using a new
simplified definition of the rotation number.

Hence, the two-dimensional non-autonomous differ-
ential system:

szl(x’y’“"t)
y:FZ(x»Y1 #‘»t) (1)

is considered, in which w is a control parameter indepen-
dent of time ¢, while the functions F, and F, are assumed
to be periodic in time with period T. Due to the periodi-
city of F) and F,, one can suppose that the variable
time is defined on the circle instead of on the whole
real axis, so that the states of the system at f and ¢ +
T are identified. In this manner, the phase space
spanned by x, y and ¢ becomes cylindrical in form, and
of interest are the periodic solution curves in this space.
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Figure 1

(a) Movement of eigenvalues in complex plane; (b)
folding in amplitude response diagram; (c) use of vanishing of
mapping or beat frequency to predict incipient folding

A periodic orbit of period kT is defined as a solution
curve X = (x(¢), y(t)) such that:

X(H) =X+ kD)

and a fundamental solution when k£ = 1 and sub-harmo-
nic orbit with k > 1 can be distinguished.

Defining a two-dimensional Poincaré section in the
usual manner, by setting ¢ equal to a constant, it is
observed that a sub-harmonic orbit of period kT has
its counterpart on the section as k points. The motion
of these points on the Poincaré section can be described
in principle by a two-dimensional discrete dynamical
system, assigning to every starting point on the section
its first (directed) return point, which can be written
as:

Xiv1 = F(x;, yi, 1)

Yier = G(xh Yi> IJ') (2)

A periodic orbit of period k for the system (equation
(2)) is then a set of k points such that:

Kivs Yirr) = (x5, ¥2)

it being presumed that there has been no periodicity
of lower order. Hence, if one wishes to study a sub-
harmonic orbit of period k7, attention can be focused
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Figure 2 (a) Geometrical definition of orbit number N; x;,, =
ax; + by; v, = ox;+ dy; Po=1{x, y); f,=r/l; N=n +
f.. (b) Graph of N plotted against u to demonstrate continuity
of N

on the kth iteration of this Poincaré map that exhibits
a fixed point on the corresponding section. This, how-
ever, is not written explicitly in the present paper.
Begin by considering an undamped system, for which
area is preserved (Liouville’s theorem) and the determi-
nant of the Jacobian matrix of the mapping is equal
to 1. If the determinant is equal to 1, it is easy to see
that both eigenvalues cannot be inside the unit circle,
so that the orbit cannot be asymptotically stable. In the
same way, it is clear that both eigenvalues cannot lie
outside the unit circle. The orbit can thus only be a
centre, if the eigenvalues actually lie on the unit circle,
or asaddle. These restrictions have some important con-
sequences for the bifurcational behaviour of the system.
Suppose in fact that u is allowed to vary slowly, so that
the eigenvalues A; of the Jacobian describe paths in the
complex plane. The only way in which an eigenvalue
can emerge from the unit circle which produces the fold
is through the rather pathological route of Figure 1(a),
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in which two eigenvalues become coincident at the bi-
furcation and then split along the real axis.

This stability transition will normally manifest itself
in the response of the parameterized system as a fold
in the amplitude response diagram, familiar at the jump
to resonance in Duffing’s equation as illustrated in
Figure 1(b). It is the aim of the present work to identify
techniques based on the vanishing of rotation (or beat)
frequencies for predicting the approach to such a fold
for both undamped and lightly damped systems.

Linearization and definition of rotation number
To examine the stability of the map:

X1 = F(xi, y;)

Yir1 = G(x;, y))
near a fixed or equilibrium point (x£, y£) let:

X; = .xE + §I

yi=y +w
for all i. Then, considering a Taylor series expansion
of the functions F(x, y) and G(x, y) about the fixed
point, and using the equilibrium condition gives:

{:i+1 = Fxfl + Fyni + 0(3""77)

N1 = Go§ + Gy"h‘ + 0(&rn7)
with m + n > 1, where the derivatives, F,, etc. are
evaluated at the equilibrium point.

In the neighbourhood of the equilibrium point, for

small linear motions, one can neglect the higher order
terms to give, in matrix form:

{i = HE,

where H is the matrix containing the function derivatives
and:

&= [ﬁ}
i

is a perturbation or error vector.

The necessary and sufficient condition for the conver-
gence of the map to the fixed point is that p(H) < 1,
where p(H) is the spectral radius of the matrix H. This
may be proved by considering the normal or canonical
form of H. However, if the eigenvalues of H are complex
conjugate, A = a * if say, then it is instructive to note
the existence? of the matrix Q, such that:

r-of; o

allowing the change of coordinates:

X;
&= Q[Y,-]

Then, making use of the polar representation:
X;=r;cos 6;
Y, =r;sin 6

it can be shown that:
0, = k6 + 6,

=y ok
Ty =Trop

for all integers k, where 6 is the argument of the eigen-
values:

8 = arctan ( 8/ )

Then for a map to become unstable, the coefficients,
under the influence of the control parameter u, must
vary so that at least one eigenvalue moves outward away
from the stability boundary [A| = 1.

The well-known instabilities which are the only struc-
turally stable bifurcations under the control of a single
parameter (see Guckenheimer and Holmes® for a com-
plete study) are the flip and divergence, where a single
real eigenvalue crosses the unit circle at —1 and +1,
respectively, and flutter, where a complex conjugate
pair of eigenvalues cross the unit circle and remain com-
plex. Of interest here, however, are undamped two-
dimensional maps whose eigenvalues must lie on the
unit circle if they are to be stable. The only way in
which such a map can become unstable is then via two
coincident eigenvalues. Furthermore, attention is
focused on the incipient folding to enable consideration
of the case when two eigenvalues become coincident
at +1, as discussed earlier.

Thus, if attention is centred on area preserving maps,
then the map is in a condition of neutral stability, and,
therefore, local points produced by successive iterations
rotate for an infinite number of times neither converging
nor diverging. Furthermore, as the coefficients are var-
ied so that the eigenvalues move around the unit circle
and approach confluence at +1, the number of iterations
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Figure 4 Poincaré maps for Duffing’s equation showing increase of rotation number in proximity of fold (r = 2in): (a) n = 1.530,
N = 3.399; (b) n = 1.614, N = 4.46; (c) n = 1.494, N = 4.99; (d) n = 1.486, N = 5.49; (e) n = 1.478, N = 5.95; (f) n = 1.454,
node

of the map required for a complete rotation of 27 about In order to investigate this behaviour further, the clas-
the origin increases. sical definition of rotation number of a map is used as
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Figure 5 Prediction curves for jump to resonance in Duffing’s equation {n?% + 29{X + x + ax® = Fy cos 7, { = 0.1; a = 0.05,
F, = 2.5): (a) enlargement (one turn); (b) N estimated from one turn; (c) N estimated from three turns; (d) N estimated from
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follows. If the (k — 1)th iteration of the map produces
the coordinates (x,, y;), which may be represented as
(7« 6,) then the rotation number R is given by:>¢

27k
R =Ilim —— 3)
k—x (gk - 00)

where 0, is defined on the real axis and not modulus
2.

If this limit exists, then the classical definition is valid
for a general nonlinear map, but the linear case, may
be simplified. As already seen, a similarity transforma-
tion may be used to produce a map in the form:

Xip1 = ax; — By;
Yis1 = B + ay;

where A, the eigenvalue of the linear map, is given by:

A=azxif=e*

Then:

O = k6 + 6, - 4)
so that:

R=(27/6)

This expression can be simplified still further if A =
e*%7$ with ¢ € [0, 1), so that:

R=1/¢ (&)

This definition is a function of the eigenvalues only,
and, since eigenvalues are invariant under similarity
transformations, this definition may also be used for
a general linear map with complex eigenvalues. The
frequency of the map rotation is then given by:

w=1/R=¢
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Figure6 Poincaré section for driven oscillator establishing equi-
valence of mapping and beat frequencies

It should be noted here that the constancy of angular
step implied by equation (4) only holds in this new trans-
formed coordinate, system. It will not, in general, hold
in the original space in which the prediction measure-
ments are performed.

Definition of orbit number

As an alternative to the above definition of rotation
number, it is possible to use a first approximation to
the period. Instead of considering the limiting beha-
viour, the number n of iterations of the map needed
before a single rotation of 27 has been surpassed can
be calculated. From a computational point of view, this
new approximation has the advantage that it does not
require the limit to be evaluated, which is time con-
suming and, indeed, may also create problems (round-
off errors) as the mapping points approach the equili-
brium state.

It can be ascertained from Figure 2 that an orbit
number can be obtained by a simple geometrical con-
struction. In fact, it is given by the sum of n, plus the
fractional part of the (n + 1)th iteration where it inter-
sects the line from the origin to the starting point. This
new definition may be written in analytic form as fol-
lows. The orbit number N of a two-dimensional map
is given by:

N=n+f ' _ (6)
where n is the least integer such that:
|arg(P,.1) — arg(Po)| > 27

If the point P, is given by the coordinates (x,, y,), the
fractional part fis then:
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f

_ PM |: (xm_xn)2+(.ym_yn)2 :ll/z
PnPn+1 (xn+1 _xn)z + (yn+l _yrt)2

and the coordinates of M = (x,,,, y,,,) are.found from:

_ XnYn+1~ Xn+1YVn
(xO/yO) (yn+l _yn) + (X,, _xn+l)

Xm = Xo)’m/)’O

To show that this new definition is well posed, it must
be proved that it is a function of the trace and a determi-
nant of the linearized matrix, and, hence, independent
of starting points.

Ym

Theorem .

The orbit number of a linear two-dimensional map, area
preserving or not, is a function of the trace and the
determinant of the coefficient matrix and is independent
of initial conditions.
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Proof
Consider the general two-dimensional linear map:

Xipy = ax; + by,
Yir1 = cx; + dy; @)

fori =0,1,2, ..., given Py = (xq, yy). It is easy to
verify that:

x,=R,(a,b,c,d)xy+ bS,_i(a, b, c,d)y,
Yp=c¢S,_(a, b, c,d)xq+ R, (d, b, c, a)y,

Letting Q,(a, b, ¢, d) = R,(d, b, c, a) then, for ease
of notation, all arguments of the polynomials may be
dropped so that:

Xp = Rnxﬂ + bSn—lyO
Yn =Sy 1xo+ Qo (8)

provided that the polynomials satisfy the following rela-
tionships:

R,.,=aR,+ bcS,_;
Sn = dSn—l + Rn = asn—l + Qn

For n > 1, the polynomial S, is given by the expression:
S.(a,b,c,d)= > ""Cfa+d)"¥(bc—ady

where r =0, 1,2, ..., (n — 8)/2, 8 = 0if n is even
and equal to 1 if n is odd, and where "C, are the binomial
coefficients.

Consequently, S, may be represented in terms of the
trace and the determinant of the coefficient matrix:

T=a+d

D =ad - bc
as:

S, = S,(7, D)

Equations (7) may be used to substitute for x,, y, etc.
iny,, to yield:
_ a1x§yo + axXoy§ + sy}
" b+ byxyo + bayj

where the coefficients are given by:
a; = c(R,S, — Ry4150-1)
a = R,0,41 — QuRisi
a3 =b(Q,+15,-1— QnSn)

and:
by =c(S, — Su-1)
by = (Qn+1 — Q) — (Rpss — R))
by = =b(S, = S,-1)

This latter equation may now be used in the equation
for f to evaluate the fractional part in terms of x;, y,
and the polynomials Q,, S, R,, etc. Finally, by compar-
ing coefficients of x, and y,, and their powers in the
numerator and denominator of the resulting expression
for f, it is possible, after some algebra, to show that:

Sn—]

f= Sp = Su-1

That is, f depends only upon n and the invariants of
the matrix Q.E.D.

It is emphasized that perhaps the more obvious defini-
tion of f based on the angular ratio:

larg(Py) — arg(P,)|
larg(Pp1) — arg(P,)|

would be unsatisfactory since invariance of this defini-
tion would be lost.

As previously stated, for the moment the behaviour
of an area preserving map is such that the determinant
is equal to +1, the eigenvalues of which move round
the unit circle. It is useful to put the general matrix
in the simplest form that displays these characteristics,
namely:

Xip1 = aX; — Y;
Yis1 = X;

In fact, any two-dimensional linear map may be trans-
formed into the map:

Xip1 = byx; + bypy;
Yirr = X
via a similarity transformation.

To prove this, consider the two-dimepsional linear
map of equation (7) in the matrix form:

Zin = Az

Performing the coordinate change:

w,= Cz, C= {Cu CIZ:‘

€1 Cn

then assuming C~! exists, the map becomes:
Wi = C- lACW,'

and it is clear that:

C'AC=B B= [b“ b“}

1 0

is required. Now the trace and the determinant of a
matrix are invariant under a similarity transformation
as are the eigenvalues, implying that:

b1[=a+d
by, =bc—ad

Equating the two products AC and CB produces the
four equations:

—dc;; —cpp+bey =0
ccyy—acy —cp=>0

(ad — bc)cyy + acyy + bey, =0
ccpp + (ad — be)ey +deyy =0

Now, the rank of this linear system is two and so one
may choose ¢, = ¢;; = 1, say. Solving the first of these
equations yields:

en=(0b-1)/d d#0

from which it may be concluded that:
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Cp=Cp—a

If d = 0, then the matrix C is simply given by:

c-[i

0 1

Restricting attention to the unit circle, this implies
that b = —1, with a varying between —2 and +2. Under
these conditions, the polynomials S,(r, D) = §,(7) are
related to the Chebyshev polynomials of the second kind
U.(2)

S.(2) = Up(2/2)

The properties of the map along the boundary D =
1 are now recovered by the properties of the Chebyshev
polynomials, since all the roots of S, are real and lie
in the range (=2, 2). The roots of these polynomials
are related to closed orbits as shown in the following
section.

Closed orbits

When ¢ = p/q say, the system performs exactly p rota-
tions of 277 about the origin in ¢ iterations, so that with
D = 1 its orbit is formed by g points. The value of
the trace corresponding to this value of ¢ is given by:

T=2cos (2mp/q) 9)

It is physically evident that the system cannot perform
p rotations in g iterations if p/q > 1/2. In general, there-
fore, a system will have int(g/2 — 1) orbits with g points,
where int(s) is the greatest integer less than or equal
tos.

When ¢ is a rational number, the eigenvalues of the
system are roots of unit, because if:

A, A = e2mp/q
then:
(/\)q = etz'”'ip =1

Hence, the closed orbits of the system correspond to
eigenvalues that are roots of unity.

On the other hand, a closed orbit of the type 1/p
must have an orbit number whose fractional part f is
0. This means that S,_; = 0 and S, = 1, so that the
closed orbits correspond to the second zero of the
Chebyshev polynomials. However, all the zeros of these
polynomials are given exactly by equation (9) so the
rotation and orbit numbers must coincide on the set
of integer numbers. More than that, all the closed orbits
can be detected using the rotation or orbit numbers.

Comparisons between rotation number and orbit
number

A computed graph of 1/R? and 1/N? is shown in Figure
3 for various values of the trace between —2 and +2.
From this figure, it can be seen that the two definitions
agree very closely in the range —1 < 7 < 2. When N
is an integer, the two values must coincide. Between
two successive values of the trace corresponding to two
integer values of N, however, the graph of N exhibits
a scallop. This behaviour is clearly evident for small
integer values of the period, but if the period is large
this behaviour ceases to be apparent, i.e. becomes insig-
nificant.
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To explain this in more detail, the continuity of f as
a function of the trace must be checked, since N is
defined in a piecewise manner. The disconuity, if any,
must occur when f changes from 1 to 0. Values of the
trace are considered in the neighbourhood of 7 = p,,
corresponding to a period of N = n + 1, shown in Figure
2(b). Clearly, the function N is continuous, but it is
necessary to check the continuity of its derivative.
Defining N = n + 1 + f,,1, when 7 is in the range
My < 7 < m,4y, the derivative of f, and f,,, at 7 = p,
can be calculated. For ease of notation, let D = d/du
so that:

_ (Sn - Sn—l)DSn—] B Sn—lD(Sn - Sn—l)

Dfa S, S0y

and:
S,1—S,)DS, —S,D(S,.1— S,
by, = Grs1 =0 (5112 5)
(Sn+l_Sn)

Noting from the properties of the Chebyshev poly-
nomials, that:

Sn+l(l"“n)= 1
Salka) = 0
Sn—l(l"‘n)=_1

it is easy to show that:

[Dfn]}-t:un = [Dfn+l]u=;b,,

proving that the derivative is also continuous.

It can be shown, however, that the second derivative
is not continuous at g = u,, and it is this discontinuity
which causes the scallops. This behaviour becomes more
evident in a graph of the square of the required recipro-
cal of the period.

Instability predictions near a fold

Near a fold, such as that shown in Figure 1(b), the orbit
number N = n + f can be approximated by n, so it
can be assumed to coincide with the rotation number.

In the neighbourhood of the bifurcation point, the
frequency = 1/N drops to zero, and its square «?
varies linearly with the trace. In fact, the frequency can
be expressed as:

w = (1/27) arctan [(4 — 72)*/7]
When 7 = 2 it is possible to expand w in a power
series, obtaining:

1(4- 72)1/2 1 (4—72)%2
0=— - 3 +

2w T 6w T

Hence, the graph of «? against 7is given locally by:
1 4—12

I

and putting 8 = 2 — 7 gives:
o? = (1/472)8

showing that the graph of «? against 7is locally a straight
line.
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If the system is not area preserving but its determinant
is constant and slightly less than 1, the eigenvalues are
constrained to move on a path of constant radius as
illustrated in the right-hand diagram of Figure I. For
such a lightly damped system, the vanishing of ? can
be used to predict the value of the trace for which the
eigenvalues become coincident.

The definitions of orbit and rotation number, if the
latter is defined in terms of the angle ¢ rather than
the limit, do not require D = 1. Consequently, the
vanishing of either R or N can be used to pedict the
point of coincidence. If the system is considered to be
lightly damped, this coincidence will be close to the fold
bifurcation, and thus any instability prediction will be
on the safe side.

When considering the general equation (1), at every
point on an equilibrium path it is possible to perform
a linear stability analysis as previously detailed. Now,
considering the trace of the associated matrices it has
been shown that «? drops to zero linearly if plotted
against some local progress parameter s, say. As can
be seen from Figure 1(b), near the fold this parameter
varies parabolically with the global control parameter
w. Hence, it is »* and not «? that will drop linearly
to zero if plotted against w. This is strictly true for un-
damped systems but for lightly damped systems, «? may
still be the best predictor.

Applications
(a) Duffing’s equation

As an example of the use of the orbit number to predict
a fold, consider Duffing’s equation in the form:

PX + 29X + X+ aX3=Fycos T

This equation involves inertia, linear viscous damping,
linear stiffness, a cubic nonlinear stiffness and co-sinu-
soidal forcing. Choosing 7 to be the control parameter,
and fixing the variables { = 0.1, a = 0.005 and F, =
2.5 then the equation exhibits a jump to resonance at
a cyclic fold near i = 1.46. Computed Poincaré maps
are shown in Figure 4 for various values of 7 in the
neighbourhood of the critical point. The orbit number
has been calculated for each value of the control para-
meter using the earlier definition and used to produce
the prediction curves shown in Figure 5.

The concave nature of the »* prediction curve always
allows straight line predictions using the «? curve may
appreciably overestimate the critical point unless
recordings very close to the fold are taken into account.

The scalloping behaviour of the prediction curves is
clearly evident in Figures 5(a) and (b). It is possible
to reduce the extent of the scallops by calculating the
orbit number after more than just a single rotation of
27 about the origin, as shown in Figures 5(c) and (d).
If the frequency is estimated in this manner, it is clearly
closer to the classical limiting definition of rotation
number. However, it should be mentioned that in a
system with relatively heavy damping, an estimation
based on only one 27 rotation might be unavoidable.

(b) Experimental beam

The rotation of a map will manifest itself in an x(¢) trace
as a low-frequency beat on top of the steady state perio-
dicresponse. The beat frequency can, therefore, be used

in exactly the same way as a map rotation frequency.
This is clarified by Figure 6 which shows that in the
three-dimensional phase space of a driven oscillation,
the Poincaré section defined by x = 0 will present the
response amplitude A and the time ¢ as mapping vari-
ables, the latter being replaceable by the phase. Thus,
the rotation of the amplitude—phase map will manifest
itself in the x(¢) time history as a beat on the amplitude,
as illustrated.

Finally, an experimental study of the frequency pre-
dictor is considered using a thin steel beam clamped
between two rigig supports and driven to resonance by
an electromagnet.” The results are summarized in Figure
7 where the top picture shows the experimentally deter-
mined response diagram, with a jump to resonance as
the forcing frequency decreases below 58 Hz. The lower
diagram shows the two-beat frequency predictors, the
beats having been measured manually off an ultraviolet
recorder trace. The o? curve is clearly the best predictor,
the w* curve approaching the axis with a shallow gradient
in an undesirable way. This is clearly because the folding
of the amplitude response curve is very local so that,
its parabolic nature is not significant over the range of
forcing frequency considered.

Conclusions

In this paper it has been shown that the rotation number,
or alternatively the orbit number, can be used to predict
the folding of a periodic oscillation. The two examples
discussed here being a numerical solution to Duffing’s
equation and the jump to resonance of an experiment-
ally driven beam. The method introduced has also been
applied to the prediction of the capsize of a rolling ship
under the action of regular ocean waves®. In this latter
example, due to the form of the restoring function, simu-
lations immediately beyond a cyclic fold in the response
curve may either restabilize at a large amplitude reson-
ant steady state oscillation or the jump in response may
be severe enough so that the vessel capsizes as modelled
by a trajectory diverging in infinity. In this particular
example the prediction of the coalescence of the eigen-
values just prior to the fold point yields useful informa-
tion which may be utilized to trigger some form of
dynamic positioning of the vessel so as to prevent any
imminent disaster. Thus the method forms a useful tool
for the prediction of potentially dangerous jumps in
amplitude of oscillating systems which can be success-
fully applied to computer simulations or possibly to
guide laboratory experiments.
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