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THREE SUBROUTINES FOR THE ANALYSIS OF
SUSPENSION BRIDGES

CLauDIO FRANCIOSI
Istituto di Scienza delle Costruzioni, Facolta’ di Ingegneria, Universita’ di Napoli, 80125 Napoli, Italy

(Received 12 February 1987)

Abstract—A new procedure for analysis of suspension bridges has been recently presented (Franciosi and
Franciosi, Comput. Struct. 26, 499-512, 1987), in which the so-called cell method was employed in order
to obtain static and dynamic response of a one-span suspension bridge.

In the present paper three efficient subroutines are introduced, which allow us to calculate the strain
energy matrix, Lagrangian mass matrix and participation factors of each vibration mode. Every matrical
operation is avoided, so that the proposed method is very fast and manageable. Both the matrices can
be immediately built, and a standard eigenvalue package will furnish eigenvalues and eigenvectors. Then,
the third subroutine calculates the participation factors of the modes, for synchronous and asynchronous
earthquakes.

A numerical example shows that the cell method leads to good approximations, even when the
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discretization is very rough.

1. INTRODUCTION

Consider a one-span suspension bridge, whose span
is [, whose sag is f, subjected to a distributed dead
load g. The cell method discretizes the structure in
such a way that the following free vibration equation
is obtained:

(K +GB)c —w*Mc =0 )
where
3
G=_8"
8f(n+1)

and n is the number of elastic cells in which the strain -

energy is supposed to be concentrated.

The strain energy matrix, K, the stiffening matrix,
B, and the Lagrangian matrix of the masses, M, can
be calculated as in [1], but the matrical formulation
is clearly not very suitable for the computer. For the
sake of clarity, we report here some interesting
formulae. )

The matrix K is given in Table 1, where k is the
array of the concentrated dibilities, and c is the
horizontal displacement of the left abutment due to
a force H =1, and in presence of fixed Lagrangian
coordinates. (See [1, formulae 20].)

The matrix B is simply given by B;=2and B;;=1
if i #j. Finally, the Lagrangian matrix of the masses
can be obtained from the triple matrical product

M=VvVTMV, @

where M is the (diagonal) matrix of the concentrated
masses, and V is the diplacement matrix of these
masses. V is given by

. <i<i—
P if 2<j<i—1

V,=0 if i<j<n+l.

&)
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If the three matrices are obtained, then the eigenvalue
problem (1) can be solved, by means of a usual
eigensolution package, and the frequencies w? can be
detected, together with their free vibration mode e;.

Modal superposition analysis is then used in order
to obtain the seismic response of the bridge. In [1] the
earthquake was assimilated to a sinusoidal displace-
ment of the abutments, whose frequency is w?. In this
case, the participation factors of each mode are given
by

elb
Pai wfe,'TMei ( )
if only one of the abutments moves, or by
efVim
Pa= “TMe TMe )

if both the abutments move in a synchronous way.
The array m contains the concentrated masses, while
b is given by:

8f

h=m+w¢

(I +n—1i).

2. THE SUBROUTINES

The three subroutines are given in the Appendix.
The first one allows us to obtain (K + GB), according
to the scheme in Table 1. Intput data are indicated in
the listing, and the procedure is quite simple: for each
row i the following elements are calculated:

—the main diagonal element (row 350)

—the element (i + 1, i) (row 360)

—the elements (j, i) for jfrom i +2 ton — 1 (rows
370-390)

—the element (n, i) (row 400).
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Table 1. Strain energy matrix

i=j
6412
ki=kitkiy ¥k +——— (L +n—i)? if i<n
+1 +1 (n+1)4cg
6412 e s
k,,,,=k,,+4k,+1+i;+—l)‘-c—% if i=n
i<j<n
642
kﬁ+k,+l+(;+—jl;40—o(l+n—i)(l+n—j) if j>i+1
D
6412
kijo1=—kigyt ko + ——5 U +n—0)n—i) if j=i+l
+1 +1 n+1 (ﬂ+1)‘cg
j=n
6412 , PP
k,,,=2k,,+|+m(l+n—l) if i<n—1
641
ky_1p=—ky+2k, \+2—7 if i=n—1
b T T m 4 1)4¢

Finally, the elements (n,n — 1) and (n, n) are caicu-
lated with the rows 420~430. The rows 490-570 add
the second order effects.

The second subroutine calculates the Lagrangian
matrix of the masses, by means of triple matrical
product (2). It is easy to sce that the particular
structure of the matrix ¥, and the diagonal form of
the matrix M reduce the routine to the loop 310-360,
and every matrical operation can be avoided. This
subroutine assumes a constant mass distribution, but
it is evident that a slightly modified routine can
handle a general mass distribution.

With the aid of these two subroutines an eigen-
value problem is defined, which can be solved by
means of a usual eigensolution package. Natural
periods and free vibration modes are thus obtained.

Finally, the third subroutine uses these results in
order to detect the seismic response of the bridge to
both synchronous and asynchronous earthquakes.
Modal participation factors are calculated, according
to eqns (4) and (5). First, the common denominator
is obtained (rows 400-500), then two simple loops
(rows 590-610 and 720-740) give the desired quan-

tities. It is worth noting that even in this case the
structure of the V' matrix allows us to avoid the
matrical products.

3. A NUMERICAL EXAMPLE

A one-span suspension bridge is considered, which
was examined previously in [1]. Its geometrical data
are reported in Table 2, and it is only necessary to
add that the hangers’ number is equal to 165. There-
fore, it seems rather artificial to discretize the beam
by introducing more than 165 elastic cells. In any
case, we shall see that the cell method has con-
vergence properties which allow us to drastically
reduce the number of the Lagrangian coordinates.
For example, in Table 3 the first five eigenvalues
are reported, for various discretization degrees. It is
easy to see that the introduction of 40 Lagrangian
coordinates gives excellent results.

These eigenvalues were obtained by means of a
routine which uses the Householder reduction, and
the Sturm sequence properties [2], because only the
first eigenvalues were required. In the last case

Table 2. Geometrical data of the proposed Messina suspension bridge

Description Name Value

Central span ] 3300 m
Lateral span IA 990 m
Sag of the cable f 300m
Distance between the cable

and the bridge at the middle

of the central span c 12m .
Area of cable ’ A, 5.856m?
Total area of the hangers 4, 1491m’
Young's modulus of the cable E, 18,000,000 tm 2
Young’s modulus of bridge and hangers E, 21,000,000 tm~?
(Constant) moment of inertia

of the bridge I  6019m*
Dead load per unit length g 94tm~!
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Table 3. The first five eigenvalues for the different dis-
cretrization degrees
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Table 4. Bending moment at the middle point of the beam,
for different discretization degrees

2 1, 1 1 2 n 3 5 10 20 40
n=3 0.1309 02041 02852 — — M 4101 3980 3915  390.1 3898
: : fO g}g; 8%%21 82(5);,2 323(2)‘; gggg; Note: The period of the earthquake is 0.3 sec, hence the
n=20 01603 02378 04257 06290 09812  Dridge is far from resonance.
n=40 01612 02384 04305 06431 1.016
n=80 01614 02385 04318 06469 1.026
n=165 01614 02385 04318 0.6469 1.026

(n = 165) the simultaneous inverse iteration method,
as given in [3], is slightly more economical, while the
Levit min—max method [4] seems to be rather un-
satisfactory, at least in the eigenvectors calculation.
Bending moments and shear stresses due to an
earthquake can be calculated by means of the modal
superposition principle, according to [1). If the earth-
quake period is far from the natural periods of the
structure, then the bending moments are nearly con-
stant along the beam, and consequently the shear
stresses are almost zero. In Table 4 the bending
moment at the middle point of the beam is given for
different discretization degrees. It is necessary to
obtain all the eigenvalues and eigenvectors, hence the
CPU time increases considerably.
Fortunately, the convergence properties of the cell
method lead to a very good result even if three
Lagrangian coordinates are introduced. This means
that the cell method can be implemented on a com-
puter with very limited memory capacity, and the
results will be satisfactory.

The computation of all the eigenvalues and eigen-
vectors was conducted through the Wilkinson QL
method [5] and through the classical Jacobi method
[6], and they have proved to be almost equivalent. Of
course, the other above mentioned methods are more
expensive.
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APPENDIX

In this appendix the listing of the three subroutines is given. They are written in HP BASIC,
and they were implemented on the HP 9807 Integral Personal Computer.

19
20
30
49
50
60
70
8e
90
100
1e
120
130

suB
REM
REM »
REM
REM
REM
REM
REM
REM +
REM +
REM #

“Matk" (k(),1,f,g,cd,n,a(,))

LI Y

OPTION BASE |

SUBROUTINE

STRAIN ENERGY MATRIX
TAKING INTO ACCOUNT SECOND ORDER EFFECTS

REM # 0 ana s na s s s s n n n t b B R R R RSN R B AR ANENERSRRBRDADERENIHN RN B RN RN

A R Ry R Ny

Matk

*
»
*
*
*
*
»
*
*
*

REM
REM

140

150 VARIABL

ES INDEX

160
170
180
130
200
218
220
230
240
250
260

REM-—~---
REM
REM +

REM * k{n+2) real
REM = 1 real

REM + f real
REM + g real

REM + cd real
REM +
REM =
REM »

n integer

array of concentrated cedibilities

span of the bridge

sag of the cable

dead load for unit length

horizontal displacement of the
left end due to H=l

number of lagrangian coordinates

LR B
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270
280
290
300
J1e
320
330
340
350
360
370
36e
390
400
410
420
430
440
450
460
470
480
430
5ee
Sie
520
530
540
550
560
570
580

19
30

49
1
60
70
80
90

CrauDIO FrANCIOS

REM #4n e s s n s s e st st aanananstt st b natasnos tRanseaissatentananasssnsns

REM »
REM +
REM «
REM +

»
QUTPUT DATA : .

a(n,n) real strain energy matrix *
»

REM # 00 a st st n sttt ittt st ittt O R AT I CRRR NN PR RN R RGOV ARRR R SRR

REM

FOR i=1 TO n-1

al1,1)mk01)+k(1+1)+kint]) Y464+ F°2/(n+1 ) 4/cde(1+n~§)"2
ali, i41),804+1, 4 )m=K(1+1 )+kin+1 )4E4#£°2/(n+1)*4/cde( 1 +n=1)s(n-1)
FOR j=142 TO n-t
ali,j),a08,1)mkint1)4644§42/¢n+) )" 4/cdsd t4n~4)e(t4n=-§)
NEXT j
alt,n),aln,i)=2ek(nt1 )+645F°2/(n+1)"8/cds{ 1-14n)

NEXT 1 ) .
a(n,n=1),a(n=1 ,ndm=k(n)+Zekint] 1464512/ (n+])*4/cd*2
aln,n)=k(n)+4sk(n+1 }+64+£2/(n+1 ) 4/cd

REM

REM
REM
REM

SECOND CRDER EFFECTS

REM

const=g*1°3/8/¢/(n+1)
FOR i=1 TO n

ali,i

)=ali,i)+2+*const

NEXT 1
FOR i=2 TO n
FOR j=1 TO.i-1{

ali,)

Y,a() ,i)=ali,j)+const

NEXT §
NEXT 1
SUBEND

SUB "MatM" (1 ,n,mass b(,))

REM
REM
REM
REM
REM
REM
REM

100 REM
110 REM
120 REM
130

140 REM
150 REM
160 REM
170 REM
180 REM
196 REM
200 REM
210 REM
220 REM
230 REM
240 REM
250 REM
26@ REM
270 REM
280 REM
290 REM

200

210 FOR
320 FOR

340
350
360
370

{e sup
20 REM
30 REM
40 REM
S@ REM
60 REM
70 REM
80 REM

by,
NEXT §
NEXT 4
SUBEND

Ly Yy Y Y Y Y]
*

SUBROUTINE MatM

2 8 » & ¥

LAGRANGIAN MATRIX OF THE MASSES

« & " 2 2 & ® g

*
L Yy Yy ey

OPTION BASE 1

VARIABLES INDEX

* INPUT DATA : »
» 1 real span of the bridge *
* n integer number of lagranglan coordinates #
. mass real distributed masses on the bridge »
* *
LA AR AR R A 2 R R R A R R R R R R Y R X Y R R R SRR Y Y
* »
* OUTPUT DATA : .
*
»
*

bin,n) lagrangian matrix of the masses .
*

L Y Y Y Y R R Yy

const=((-1)/(n+l))"2emass

1=1 TO n
§=1 TO
31),btj,1)=(n-1+1)sconst

“Particip" (n,nmodes mass,l b(,) vet(,) bsm(), om2s ,psl), pa())
."""C""..C“'C"l.".'.l‘..l.l.lII'IIIIIIIIIQ'.ICIi..l".'.i..
*

SUBROUTINE - Particip

- e 2w

« * x v g %
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90 REM « PARTICIPATION COEFFICIENTS FOR .

100
110
120
130
140
150
150
170
180
190
200
210
220
230
240
250
260
270
280
230
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
450
470
480
490
500
510
520
530
540
550
560
570
580
590
500
510
620
530
640
650
660
670
580
590
700
710
720
730
740
750
760
770

REM + SYNCHRONOUS AND ASYNCHRONOUS EARTHQUAKES »
REM » »
REM #asassaoasssaausaiassstaantantnt i nueanesnontnsunnnesosiannneasssass
REM

OPTION BASE 1

REM
REM VARIABLES INDEX
REM
REM
REM S e nna n e a RN R R AR R R R R R R R R BRI R B R R AR RN RPN AN RR RN NIRRT R
REM INPUT DATA:
REM

REM

REM

REM

REM

* -
* n number of lagrangian coordinates #
. nmodes number of computed eigenvalues *
* mass distributed mass .
* 1 bridge span *
* b{n,n) lagrangian matrix of masses «
REM » vet(n, nmodes) eigenvectors .
REM » bsm(n) subsidiary array .
REM « N om2s earthquake frequency *
REM » »
REM + *
REM » »
REM = »
REM # »
REM » *
REM = *
RE“ LR R R R Y X R R R R Y R R N RS E SRR Y )
REM

REM

const=(-mass)*1/(n+t)

FOR i=1 TO nmodes

pl1=0

Ry Y Y Y Y R Y P YY)

OUTPUT DATA:
ps{nmodes) particip. coeff. for sync. earth.
pal{nmodes) particip. coeff, for asyn. earth.

FOR j=! TO n
avi(j)=0
FOR k=1 TO n
avi(j)=avi(jrebl g, k)evet(k,i)
NEXT k
NEXT j
FOR j=! TO n
pl=pltavi(jlevat(yj i)
NEXT j
REM
REM RABERR RPN E R AR RN RN R R R AR R N R RANR SR RI R RRRRRAFERARERNRN AR RRBRNR
REM + »
REM + SINCHRONOUS EARTHQUAKE .
REM » ’ .
RE" EARER RS RRN AR R AR RN NSRS RN AR B R RN ARR RN B AR R R AR RAERRRARERRRRNERRR RN
REM
ps(i)=Q
FOR 4=1 TO n
ps(i)d=ps{i)tvet(j idebam( )
NEXT j
psii)eps(i)/pl/om2s
REM
REM .
aE" AR SRR RN R BAR R NER RN AN BBEDREBARRERRR NP RRRNRNRNCRR AR NEDOEGRRRNESR
REM + *
REM » ASINCHRONOUS EARTHQUAKE .
REM # »
REM #8848 asnae s nat s aaastssnintotnattassnisiasinsinaenaiensnstnsinssnsss
REM
pa(1)=0
FOR =1 TO n
pali)=pali)+vat(j, 1)econste(n-j+1)
NEXT
pali)=pa(i)/pl
NEXT 1
SUBEND



