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In this paper some vibration and buckling problems are solved by means of the optimized
Rayleigh and Timoshenko quotients. The use of the Mathematica symbolic language
produces closer approximations than the usual ones, because two-parameter quotients can

be employed.
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1. INTRODUCTION

Since its introduction in 1870 [1], Rayleigh’s quotient has been extensively used to give
approximate values of natural frequencies and buckling loads for very many one-
dimensional structures. An improved version of this quotient was proposed by the same
author in 1894, [2], who used a trial function polynomial with a non-integer undetermined
power (the so-called non-integer power Rayleigh method).

Although the method was successfully used by Stodola in 1927 [3], the intrinsic
mathematical difficulties led to neglect of this powerful approach, which was recently
rediscovered by Schmidt and Bert [4, 5], and consequently the non-integer power
Rayleigh method is now known as the optimized Rayleigh method [6, 7]. More recently,
it has been extended to cover two-dimensional problems by applying the Kantorovich
method {8, 9].

Later on, a different implementation of the same quotient was proposed by Elishakoff
[10], in which an undetermined multiplier rather than an undetermined power is used
(non-integer multiplier Rayleigh method). It seems that this choice leads to simpler
formulae, and even to more accurate results [11, 12].

In this paper the powerful Mathematica [13] symbolic language is used to obtain very
accurate approximations to some vibrations and buckling problems. The use of symbolic
software allowed the application for the first time—to the authors’ knowledge—the
non-integer multiplier Rayleigh method with two undetermined multipliers, and this
approach probably yields the same accuracy as a four-term polynomial approximation
with fixed exponents [14]. On the other hand, two exponential parameters were used by
Grossi et al. [15].

Finally, an interesting application to vibration problems in the presence of axial
compressive loads leads to a close approximation to the whole frequency-axial load
curve, so enabling the critical load to be calculated even for pseudo-conservative
systems [16].
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2. VIBRATION PROBLEMS

As a first example, consider a slender conical tapered bar with span L, in which the
Young modulus E is supposed to be constant and the cross-sectional area and the mass
per unit length are given by

AX) =2aX, m(X)=2mX, (1)

with X = x/L. The first axial natural frequency of this structure has been calculated by
Bert [17] using the trial function

w(X) = C(X" — 1). 1))

The optimal value of n to minimize the Rayleigh quotient,
1 1
@*(n) = j EAw" dX/J mw? dX, €))
0 0

is equal to ﬁ & 1-4142, and the corresponding non-dimensional radian frequency,
@ = /@*'my L Eay, 4
is found to be equal to 2-4142.

If a non-integer multiplier Rayleigh approach is used, then one can use the trial function
wX) = (X" — 1) + k(X* - 1), )

since the boundary conditions
w(l) =0, w(0)=0 ©)

are both satisfied.
The following lines of Mathematica solve the problem:

v=(x"2— 1)+ k(x4 — 1);
a = 2x;

m = 2x;

nray = Simplify[Integrate[a x D[v, x]*2, {x, 0, 1}];
dray = Simplify[Integrate[m * v*2, {x, 0, 1}];

ray = Simplify[nra&]éray];

Simplify[Solve[D[ray, k] = = 0, k]]

ray/.%
Two values of the undetermined muitiplier k are as obtained as
k= (=12 1 /3422 M
and the corresponding values of the Rayleigh quotients are
o, = DB L AINF 12+ J34) + 3/242(F 12 + /34y ®

10 + 25/22(F 12 + /34) + 4/121(F12 + . /34) ’
and, numerically,
@ ~ 2-40502. ©9)

This value is very close to the true result (&, = 2-4048 [18]), so that Elishakoff’s statement
[14]: ““the approximation with an adjustable parameter entering linearly turned out to yield
more straightforward results than the non-integer power version of Rayleigh” is confirmed.
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The use of Mathematica allows the choice of the two-parameter trial function
wX) =X = 1)+ k(X* - 1)+ k(X° - 1). (10)
In this case it is necessary to solve the non-linear system:
00*/ok =0,  dw*/ok, =0, (11)

and this is a formidable task, which can be tackled with the aid of symbolic languages.
The following lines of Mathematica solve the problem:

v=(x"2-1)+ k(x*4 — 1) + k1(x"6 — 1);

a=2x;

m = 2x;

nray = Simplify[Integrate[a « D[v, x]"2,{x, 0, 1}];

dray = Simplify[Integrate[m * v*2, {x, 0, 1}];

ray = Simplify[nray/dray]; :
Simplify[Solve[{D[ray, k] = =0, Diray, k1] = = 0},{k, k1}]]
ray/.%

The optimized values of the two coefficients (k, k,) are equal to:
(k, ki), = (—2-44894633, 1-52783972),
(k, k1)2 = (—0-35414496, 0-04715234),
(k, ki) = (—1-43815986, 0-58511943). (12)

From the second set of coefficients
@ ~ 2-404825757, (13)

which is almost coincident with the exact value.

Sometimes it is also useful to adopt a parametric version of the optimized Rayleigh
method, in which one, or more, parameters are left unspecified.

Consider, for example, the cantilever beam of span L in Figure 1, with rectangular
cross-section and linearly varying breadth. Both the area and the second moment of area
of the cross section will vary according to the same law ({ = z/L),

IO=K(—-c), AQ)= Aol — <)), (14,15)

and it is convenient to apply the optimization procedure without specifying the value
of the parameter c. In this way, a single formula will be deduced, which is valid for
complete and truncated beams (see reference [19]). If the following trial function is

adopted,
v({) =+ k{°, 16)

L
Figure 1. Cantilever beam with linearly varying breadth.
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TABLE 1
Non-dimensional frequency for cantilever beam with varying cross-section: one-parameter
approximation
I=5(1-c) I=1LQ1 -y
r ~A ) r A Al
¢ k @ Exact [19] k @
0 —0-38367 3-53273 3-5160 —0-38367 3-53273
01 —0-38172 3-64436 — —0-37574 3-56519
0-2 —0-37948 3-77312 — —0-36407 3-61056
03 —0-37691 392360 — —0-34649 3-67087
0-4 —0-37395 4-10232 40970 —0-31931 3-74845
0-5 —0-37053 4-31882 4-3152 —0-27600 3-84587
0-6 —0-36662 4-58787 4-5853 —0-20455 3-96645
07 —-0-36237 4-93370 49316 —0-08283 4-11671
0-8 —0-35848 5-:39962 5-3976 012703 4-31677
09 —0-35791 6-07257 6-0704 0-46271 463618
1 —0-37400 7-15899 7-1565 0-77548 5-31874
then the quotient
1 1
@’(k) =J; ED"™({)d{ / Jn pAV(() dl an

can be optimized with respect to k, and the following two values of the unknown multiplier
are obtained,

ki = (4 £ \/B)C, (18)
where
A = =768 + 1266¢ — 525¢%,
B = 3(53248 — 170112¢ + 203532¢* — '108060c3 + 21475¢%),
C = 30(32 — 53¢ + 22¢%), ‘ (19)

and p is the mass density of the beam.
It is also common to deal with beams with varying height, where

IQ) =Lt =Ly,  AQ) =41 — D). (20,21)
If the same trial function (16) is used, then the three coefficients in equation (18) are given
A = —7680 + 25380c — 31494¢? + 17460¢> — 3675¢*,
B = 3(5324800 — 33753600c + 94901680c* — 154384080c* + 158748012¢*
— 105529400¢° + 44230940c® — 10670280¢” + 1132275¢%),
C = 30(320 — 1050c + 1308¢? — 733¢® + 156¢*). (22)

In Table 1 the first non-dimensional frequency is given, for both the variation laws, and
a comparison is also made with the exact results given in reference [19). The value ¢ =0
corresponds to a constant cross section, while ¢ = 1 corresponds to a cantilever beam
with a sharp end. The optimum value of the multiplier is also reported, and it is perhaps
worth noting that the beam with linearly varying breadth is characterized by an almost
constant ¢ value.
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The optimization method can also be employed to approximate higher eigenvalues, as
iltustrated by Laura and Cortinez [20] using a Galerkin approach and a one-parameter
non-integer power Rayleigh method.

In the following a similar procedure will be employed in order to find close upper bounds
to the first two frequencies for the tapered cantilever beam with linearly varying height.
Moreover, a two-parameter non-integer multiplier Rayleigh method will be adopted, using
a Ritz approach.

To this end, the following trial function is defined:

v(z) = (@2} + a&2®)(1 + tz + 1,2%). (23)

The strain energy and the kinetic energy are readily calculated, and the following stiffness
matrix and mass matrix are deduced:

_ kn ki _ | mp
k= [kxz kzz:l, m= [mlz mzz]' 24
Here

ki =8 —12¢c + 8¢ — 2¢° + (24 — 48¢c + 36¢? — £c*) + 1124 — 54c + Bc* — 12¢%)
+ 1032 — 72¢c + E¢? — 16¢°) + t1(72 — B + 14407 — BcP)
+ (% — 144c + ¥c* — 36¢°), - (25)
foiz = 12 — 24¢ + 18¢2 — 26 + 1(40 — 90c + 72¢* — 20¢%) + (36 — e + T2c* — %)
+ 1(56 — Lc + 112¢* — 32¢%) + 1 (38 — 264c + L¥c? — 66¢°)
+ £(80 — 8¢ + 180¢* — ¥¢?), (26)
ky =24 — S4c + 28c? — 120 + 1(72 — 8¢ + 144¢% — B )
— (8 — 144c + ¥ ? - 360°)
+4,(96 — 240c + 402 — 60c®) + 11,(160 — Z2¢ + 360c? — 2 %)
+ (% — 300 + 222 — 80¢%), Q7

m.,=,l—§+t(§—§c)+t2(%—§)+t. (%—%>+ttl(%—sc)+t%<%—§), (28)

mp=i-dc+1—io)+ LG —30)+ G -3+ mBE -3+ 8G—fo) (29
mp=3—kc+1G—3c) + G —3c) + nG— o) + G —fre) + Al —z0).  (30)

The two eigenvalues of the resulting problem,
k -~ w'm) =0, 31

are functions of the two unknown multipliers and can be optimized with respect to them,
by imposing

00?[0t = 80?2/t =0, i=1,2. (32)

In Table 2 the first two frequencies are given, together with the corresponding multipliers,
for various taper ratios. For the sake of comparisons, the exact frequencies are also given,
as deduced by solving the differential equations of motion [21]. The almost perfect
coincidence of the first frequency and the good agreement of the second frequency should
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TABLE 2

First two non-dimensional frequencies for cantilever beam with linearly varying height:
two-parameter approximation and exact results

c w a t 4
0 3-516 . 3:516 —0-7682 0-1971
01 3-559 3560 —0-2515 0-0064
02 3-608 3-610 " —0-0869 —0-0476
03 3-667 3-668 0-0856 —0-1081
0-4 3-737 3-738 0-2821 —0-1776
05 3-824 3-824 0-3241 —0-2871
06 3934 3-935 —0-1109 —0-1705
07 4-082 4-083 —0-0243 —0-2128
0-8 4-293 4296 0-0823 —0-2313
09 4631 4-634 0-1719 —0-1304
0 22:034 22158 —0-8649 0-1567
01 21-338 21-472 —0-7181 0-0478
02 20621 20-752 —0-5230 —0-0965
03 19-881 19-991 —0-2595 —0-2905
04 19-114 19-191 0-1008 —0-5534
0-5 18-317 18-357 0-5969 —0-9092
0-6 17-488 17-509 1-2712 —1-3749
0-7 16:625 16-674 21246 -1-9052
0-8 15-743 15-872 29053 —2-1579
09 14931 15-069 2-5406 —0-8905

be noticed, for all the taper ratios. It is also worth noting that the case ¢ = 1 (wedge beam)
cannot be solved in terms of Bessel functions.

As a final example in vibration problems, consider a beam of uniform cross-section with
flexible ends (Figure 2). A similar structural system was examined by Laura and co-workers
[22], but their analysis was restricted to symmetric beams. The governing boundary
conditions are

v(iz=0)=0, v (z=0)=c{v"(z=0), (33)
vz=0)=0, v(iE=ID)=-cv'@=I), (34)

where ¢i = Elc; and ¢; are the flexibility constants at the ends. A suitable approximation
function can be

f@)=z(d + diz + d2* + 2°), 35)
where

_ B+ 6cil
" Acl +¢)) + 21+ 12¢icifl

=2, d2=—2c'T+l9-—, = 2cia/b, (36)

d B

|« .
| , |
Figure 2. Beam with rotationally flexible ends.
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TABLE 3
Non-dimensional frequency for symmetric beam with rotationally flexible ends
¢l =c k @ Exact [22] Laura [22]
0 1-43338 22-3776 22:3732 22:3798
01 0-66657 17-2699 17-2693 —
02 0-40281 15-1900 15-1894 151915
0-4 0-22950 13-3065 13-3054 13-3068
05 0-19339 12-:7949 12-7937 —
06 0-16954 12:4173 12-4160 12-4171
0-8 0-14032 11-8962 11-8950 —
1 0-12328 11-5532 11-5518 11-5527
10 0-06702 10-0670 10-0657 10-0663
100 0-06200 9-8907 9-8895 9-8900
1000 0-06150 9-8728 9-8716 —
and the Rayleigh quotient
1 /] .
(k) = <£ v"({) d{ + v *(0)/er + v”(l)/Cz) / f (94 (37
0

can be conveniently calculated by using the trial function

v(2) = f@)(1 + kf(2)). ‘ (3%

In Table 3 the first non-dimensional frequency is given for a symmetric (c; = c;) beam
with constant cross section and for various values of the flexibility. A comparison is made
with the exact values and with the results obtained by Laura et al. by taking into account
the symmetry of the system. As can be immediately seen, our results are more accurate
for low values of the flexibility, so confirming the statement: “If one takes into account
the symmetry of the system the calculated eigenvalues are, in general, more accurate than
those which would result if the complete structural system were analyzed” [22].

In Table 4 the approximate frequencies for two asymmetric beams with constant cross
section are compared with the exact values calculated by means of the method reported
in reference [23). In the first case the left end is supposed to be clamped (ci = 0), whereas

TABLE 4
Non-dimensional frequency for asymmetric beam with rotationally flexible ends
=0 ¢ = 1000
¢ k & Exact 23] & @ Exact [23]
0-1 09635 19-6302 19-6273 0-2065 13-4368 13-4306
0-2 0-7378 18-4341 18:4292 0-1611 12-4946 12-4910
04 0-5508 17-3440 17-3361 0-1210 11-5893 11-5871
0-6 04734 16-8345 16-8253 0-1035 11-1493 11-1475
0-8 0-4319 16-:5394 16:5295 0-0938 10-8889 10-8874
1 0-4062 16:3468 16:3360 0-0877 10-7168 10-7154
S 0-3206 15-6354 15-6234 0-0669 10-0647 10-0635.
10 0-3097 15-5345 15-5223 0-0642 9-97000 9-9688
100 02998 ° 15-4410 15-4288 0-0617 9-88179 9-88058

1000 0-2988 15-4316 15:4190 0-0615 9-87280 9-8716
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in the other case a large flexibility value (¢ = 1000) simulates a simply supported end.
The agreement is quite satisfactory, for all the values of the flexibilities.

3. BUCKLING PROBLEMS

Another interesting application of the optimized Rayleigh quotient is to the solution of
buckling problems. Consider first the classical example of a cantilever beam with constant
cross section, subjected to a concentrated axial force F at the free end. It is well-known
that the exact non-dimensional critical load

4= FLYEI (39)

is given by #°/4, and that the same problem was solved by means of the Rayleigh approach
with one multiplier [24]. A second order approximation can be deduced by using the trial
function

() =0+ kL + kLS, (40)
and by running the following Mathematica lines:

v=2z"2+kz"4 +klz"6;

nray = Simplify[Integrate[D[v, {z, 2}]*2,{z, 0,.1}];

dray = Simplify[Integrate[D[v, 2)*2,{z, 0, 1}];

ray = Simplify[nray/dray];

Simplify[Solve[{D[ray,k] = =0, Dlray, k1}= = 0},{k, k1}]]
ray/.%

The Rayleigh quotient
1 1
ik, ki) =f v"({)d{ /f o) d¢ @)
0 0

will be given by

o 4 + 16k + (144/5)k> + 24k, + (720/T)kk; + 100k
B = @B+ (16/5)k + 16/ + 24/ Tk, + (16/3)kks + (36/11)k3°

and its minimum values are obtained corresponding to the following three pairs of
parameters:

42)

(k, ki), = (—2-75618246, 1-806102419),
(k, ki) = (—0-2042053916, 0-01510151945),
(k, k))s = (—1-437122235, 0-5364280531). @3)

For the second set of parameters a critical load ji = 2-467401752 is obtained, which is
0-0136% higher than the true result.
A dramatic improvement can be obtained if the optimized Timoshenko quotient

A= f v™({) d¢ / I @) — v d “49

is used. In fact, as reported in reference [24], a Timoshenko approach with one mﬁltiplier
gives a critical load. which is just 0026% higher than the exact value, whereas the
corresponding Rayleigh quotient is 0-75% higher than the true result.
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TABLE §
Non-dimensional critical load for asymmetric beam with rotationally flexible ends

ci=c =0 ¢l = 1000000
r A Al 8 A h) r - Al
¢ k i k i k i
0 5969958 39-60882 5969958  39-60882 0611426  20-808843
01 2083442 28-17446 3433443 33299792 0-374269 17374920

0-2 0974847 22-679436 2:279776 29-881223 0257528 15:419430
0-4  0-419815 17-756836 1-467229 26-588241 0-166395 13-473009
06 0267933 15-544423 1-174152 25-030602 0-131149 12-527794
0-8  0-202656 14-297014 1-027913 24-130373 0-113072 11-973491
1 0-167472 13-497999 0-9411831 23-545357 0-102211 11-609942

5 0-077229 10-656556 0-674333 21-412189 0-068323 10-260652
10 0-068476 10-268199 0-642641 21-114321 0-064278 10-069144
100 0-061090 9911911 0-614525 20-839737 0-060692 9-891909
1000 0-0603768 9-875925 0-611735 20-811933 0-060337 9-873925

Another improvement can be obtained if a two-term Timoshenko approach is used:

v=2z"2+kz"4 +kl2z"6;

vli=v/z—>1

nray = Simplify[Integrate[D[v, z]"2,{z, 0, 1}];

dray = Simplify[Integrate[(vl — v)*2,{z, 0, 1}];

ray = Simplify[nray/dray];

Simplify[Solve[{D[ray, k] = =0, Di[ray, k1] = = 0},{k, k1}]]
ray/.%

The quotient can be calculated as

39(385 + 924k + 660k> + 990k, + 1540kk, + 945k?)

Ak, k) = 573003 + 6864k + 4004k + T150k: T 8424kk, + 45565 D)
and its minimum values correspond to the following parameter values:
(k, ky)y = (—2-880577025, 1-925817278),
(k, k1) = (—0-2046221973, 0-01537081063),
(k, k1)s = (—1-505631194, 0-602364384). (46)

The second set of parameters gives the non-dimensional critical load as ji=
2-467401108746602, which is just 3-41 x 107 higher than the true result.
As another example, the critical load for the beam in Figure 2 is calculated:

A= (J v"(0) 4 + v"(0)/er + v’z(l)/Cz) / J v'(§)* dL. @é4n

If the trial function (28) is used, a very long expression is obtained, which is not
possible to give here. On the other hand, some numerical results are given in Table 5.
The limiting cases reproduce the clamped beam (c; = ¢; = 0), the clamped-hinged beam
(ci =0, ¢; = o0) and the simply supported beam (¢{ = o0, ¢; = ).

Finally, the buckling loads for cantilever and simply supported beams w1th variable
cross-section, in the presence of variable axial forces are calculated. More precisely, the
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following variation law of the moment of inertia will be considered,

1(§) = L(1 + ¢y, 48)
and the distributed load along the column will be given by
q(0) = gl 49)

Firstly, it is interesting to consider in some detail the concentrated load case, which is
defined by the Rayleigh quotient

i =I;—I;: ='[ (1 + {yv"™({) dg /J v*() d¢, (50)
or by the Timoshenko quotient
p= I;—I;: = f (1 + Oyv™(0) d¢ /J (1) — o))y’ d¢. 1

Of course, v(1) = 0 will result for the simply supported case. The one-parameter results
have been obtained by using the trial function

(@) =+ k0 (52
for the cantilever beam, and '

w@) ={1 -0, o) =w@( +kw(()) (53)
for the simply supported beam. A second order approximation can be deduced by
employing:

v(@) =+ k0 + kil (54
and
wl@) ={1-=0), o) =w@A + kw@) + kiw(()*). (GR))

for the cantilever and the simply supported beam, respectively. The results are given
in Table 6, together with the exact values, as given in reference [25] for p =1 and
p=2. As can be easily seen, the Timoshenko quotient behaves better than the

TABLE 6

Non-dimensional critical load for cantilever beam and simply supported beam with varying
cross-section, subjected to concentrated load at the end

Beam Exact [25] RS1 RS2 TSI TS2
: Pl
Free-clamped 3-1176962 3-12053 3117928 3-117754 31176998
Clamped-free 41241844 421553 4125455 4127228 412421
Hinged-hinged 14-51125 14-8126 14-8044 14-5843 14-58426
p=2
Free-clamped 3-8363769 3-92963 3-83785 3-83891 3-836394
Clamped-free 67318654 696578 675393 6-73989 6732289
Hinged-hinged 20792288 22-5518 22:5221 21-21665 21-21653
p=3
Free-clamped — 501494 46347 462251 4-612390
Clamped-free — 11-0944 10-80128 10-70591 10-6938

Hinged-hinged — 34-8021 346743 30-3637 30-36157
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TABLE 7

Non-dimensional critical load for cantilever beam with varying cross-section, subjected to
distributed axial load

p

r 0 1 2 3 4 5
0 783797 16103115  27-2607 413101 582512 780844
(7-83735)  (16-10095)  (27-25691)  (41:30481)  (58-24450)  (78-07591)
1 13-8872 29-4061 50-6998 777720 110-6243 149:2581
(13-88629) — — — — —
2 242878 532774 938017 145-8796 209-5159 284-7132
3 A1-8354 95-6480 172:516 272:503 395615 541-853

H

t

Rayleigh quotient, as already stated in reference [26]. Consequently, a more detailed
analysis of the free-clamped beam was performed by using a two-parameter Timoshenko
quotient. Similar analyses for other boundary conditions pose no difficulties. In Table 7
the non-dimensional critical load

2 !
=g J ol dL (56)

is given for various values of the parameters » and p. Comparisons can only be made
for the cases r =0 and r = 1, p = 0, and show good agreement between exact [25] and
approximate results.

4. FREQUENCY-AXIAL LOAD CURVES

Consider now a vibrating cantilever beam in the presence of a concentrated axial load
F at the tip. If the force is assumed to be conservative, then the first vibration frequency
can be given by the Rayleigh quotient [27]: e.g.,

@' = (J ER"™({)d{ — F J v"() dC) / J pAvY(() d{. (57)

If the height of the cross section is assumed to vary according to a linear law (see Figure 3),
then the area of the moment of inertia of the cross section will be given by

AQ) = A(1 =), 1) =I(l — L), (58)

respectively, where ¢ is a parameter which can also be negative. In order to obtain a
first-order approximation of the frequency-load relationship, a one-parameter optimized
Rayleigh method is used with trial function

v() =0+ K, (59)

Figure 3. Cantilever beam with linearly varying height, subjected to axial force at the tip.
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g 30
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S -5
“ 70 05 1 15 2 25 3
Non-dimensional axial load
Figure 4. Axial load-frequency relationship for a cantilever beam with linearly varying breadth. —, RS1,
¢=0; ----, RS1, ¢ =05 (smaller slope curve); ————, ¢ = 1-0 (larger slope curve); — ——, RS2, ¢ =0;
—w—w—, RS2, ¢=05—-~-— , RS2, ¢ = 1-0.
to obtain the quotient
_ EI A + Bk + Ck?
k) = —2
(k) = 4, T68 — 140c + (280 — 2400)k + (120 = 105008 (60)
where
A = 3360 — 5040c + 3360c> — 840c® — 112002, (61)
B = 10080 — 20160c + 15120c> — 4032¢* — 252047, (62)
C = 10080 — 22680c + 18144c? — 5040¢® — 151222, (63)

o = FJEL. (64)

The usual procedure leads to the two parameter values

ki=(R £ 6,/S8*—20TU)/90T (65)

where
R = EI(—46080 + 152280c — 188964¢* + 104760c* — 22050¢*) + F(4272 — 3360c),
(66)
S = EI(7680 — 25380c + 31494¢* — 17460¢* + 3675¢*) — F(712 — 560¢),  (67)
T = EL(640 — 2100c + 2616¢* — 1466¢* + 312¢*) — F(48 — 39c¢), (68)

U = EL(3360 — 11520c 4 14340c* — 7824¢° + 1620c*) — F(490 — 375c¢). (69)

In Figure 4 some frequency-axial load curves are sketched, for various values of the ¢ par-
ameter. In the same figure, the results of a two-parameter Rayleigh approach are reported,
and the differences seem to be noticeable only for the conical beam (c = 1).

Finally, in Figure 5 the same curves as above are reported, for a beam with linearly
varying breadth. In this case, the two-parameter refinement seems to be unnecessary.

5. CONCLUSIONS

The aim of this paper was twofold: first of all, to show all the potentialities of the
Rayleigh and Timoshenko quotients in their non-integer multiplier version, and then to
obtain—by using the Mathematica symbolic language—close approximations to some
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Figure 5. Axial load-frequency relationship for a cantilever beam with linearly varying height. —, ¢ = 0,
----, ¢ =025 (lower slope curve); ~———, ¢ = 0-5 (larger slope curve); ———, ¢ =075 ~-~-—, ¢c= 1-0.

classical problems in vibrations and buckling analysis. The following conclusions can be
drawn.

(1) The Timoshenko approach is noticeably more powerful than the corresponding
Rayleigh method, at least for the problems considered in this paper.

(2) The rate of convergence of the quotients is generally so fast that the two-parameter
version gives very satisfactory results.

(3) The use of the Mathematica software allows one to calculate easily quotients with
unknown parameters, as for example buckling loads of beams with non-constant
cross-section or with elastic ends. '

ACKNOWLEDGMENTS

The authors wish to express their gratitude to one of the referees, who suggested a
number of improvements.

REFERENCES

1. LORD RAYLEIGH 1870 Philosophical Transactions of the Royal Society of London A161, 77-118.
On the theory of resonance.
. LorD RAYLEIGH, Theory of Sound, Vol. I, Macmillan, London, 1894
. A. STODOLA 1927 Steam and Gas Turbines with a Supplement of the Prospects of the Thermal
Prime Mover, Vol. II. New York; McGraw-Hill.
. R. ScHMIDT 1981 Industrial Mathematics 31, 37-46. A variant of the Rayleigh-Ritz method.
. C. BERT 1984 Industrial Mathematics 34, 65-67. Use of symmetry in applying the Rayleigh-
Schmidt method to static and free-vibration problems.
6. P. A. A. LAURA 1989 Applied Mechanics Review 42(11), 128-132. Recent applications of the
optimized Rayleigh method.
7. P. A. A. LAURA 1995 Ocean Engineering 22(3), 235-250. Optimization of variational methods.
8. P. A. A. LaURA and V. H. CORTINEZ 1988 Journal of Sound and Vibration 122, 396-398.
Optimization of the Kantorovich method when solving eigenvalue problems.
9. V. H. CorTINEZ and P. A. A. LAURA 1988 Applied Acoustics 33, 153-159. Further optimization
of the Kantorovich method when applied to vibrations problems.

10. 1. ELISHAKOFF 1987 Journal of Sound and Vibration 144, 159-163. A variant of the Rayleigh’s
and Galerkin’s method with variable parameter as a multiplier.

11. 1. ELisHAKOFF and F. PELLEGRINI 1987 Journal of Sound and Vibration 115, 182-186. Application
of Bessel and Lommel function and undetermined multiplier Galerkin method version for
instability of a nonuniform column.

12. P. A. A. LAURA and V. H. CorTINEZ 1988 Journal of Sound and Vibration 124, 388-389.
Rayleigh’s and Galerkin’s methods: use of a variable parameter as a multiplier versus minim-
ization with respect to an exponential parameter.

w N

WA



808
13.

14,
15.
16.
17.

18.
19.

20.
21.
22

23.
24,

25.
26.
217.

M. A. DE ROSA AND C. FRANCIOSI

WOLFRAM RESEARCH INC. 1992 Mathematica, Version 2.2. Champaign, Illinois: Wolfram
Research, Inc.

1. ELisHAKOFF 1987 Journal of Sound and Vibration 118, 163-165. A remark on the adjustable
parameter version of Rayleigh’s method.

R. O. Grossi, P. A. A. LAURA and Y. NARITA 1986 Journal of Sound and Vibration 106, 181-186.
A note on vibrating polar orthotropic circular plates carrying concentrated masses.

K. HUSEYIN 1978 Vibrations and Stability of Multiple Parameter Systems. Alphen aan den Rijn:
Sijthoff, Noordhoff.

C. BerT 1987 Journal of Sound and Vibration 119, 317-326. Application of a version of the
Rayleigh technique to problems of bars, beams, columns, membranes, and plates.

L. MEROVITCH 1967 Analytical Methods in Vibrations. New York: Macmillan.

S. NAGULESWARAN 1992 Journal of Sound and Vibration 153, 509-522. Vibration of an
Euler-Bernoulli beam of constant depth and with linearly varying breadth.

P. A. A. LAURA and V. H. CORTINEZ 1986 American Institute of Chemical Engineers Journal
32(6), 1025-1026. Optimization of Eigenvalues when using the Galerkon method.

M. A. DE Rosa and C. FraNciost Journal of Sound and Vibration (to appear). Higher-order
Timoshenko quotient in the stability and dynamic analysis of smoothly tapered beams.

P. A. A. LAURA, B. VALERGIA DE GRECO, J. C. UTJES and R. CARCINER 1988 Journal of Sound
and Vibration 120, 587-596. Numerical experiments on free and forced vibrations of beams of
non-uniform cross-section.

M. A. DE RosA 1994 Journal of Sound and Vibration 173, 563-567. Free vibrations of stepped
beams with elastic ends.

1. ELisHAKOFF and C. W. BERT 1988 Computer Methods in Applied Mechanics and Engineering
67, 297-309. Comparison of Rayleigh’s noninteger—power method with Rayleigh—Ritz
method.

M. EISENBERGER 1991 International Journal of Solids and Structures 27, 135-143. Buckling loads
for variable cross-section members with variable axial forces.

S. P. TiMOsHENKO and J. M. GERE 1961 Theory of Elastic Stability. New York: McGraw-Hill
Book Company.

N. G. STEPHEN 1989 Journal of Sound and Vibration 131, 345-350. Beam vibration under
compressive axial load—upper and lower bound approximation.



