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Abstract

In this paper- three finite elements aré proposed, for the static analysis of beams with varying cross section. The
shape functions are derived by using a solution proposed in Ref. [1], and the resulting stiffness matrix is generated
by means of a symbolic software. The consistent loads are also given, equivalent to a constant distributéd 1oad. The
performances of the three proposed finite elements aré checked for-some numerical examples, and the computatlonal
gain is clearly shown. © 1998 Elsevier Science Ltd. All rights reserved.
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1. Notation

$(2)

column vector of the Lagrangian

.coordinates

width of the element at the left end
width of the element at the right end
width of the cross section
deformation vector

colump;vector of the nodal coordinates
column vector of the consistent nodal
forces ‘
Young’s modulus

depth of the element at the, left end:
depth of the element at, the nght end
depth of the cross section

element stiffness matrix -

_second moment of area

span of the finite element

row vector.of the shape functions
uniformly distributed load

vertical displacement

row vector of the coordinate functions
taper ratio for the width

taper ratjo for the depth

rotation of the cross section .,

2. Introduction

One of the commonest structural members is the
beam with rectangular varying cross.section, in which
the depth and/or the width of:the section is assumed
to vary according to a simple law. In a finite element
context, those mon-uniform member is often. approxi-
mated by a large number of small uniform elements,
replacmg the continuious variation w1th a step law.

In this way it is always possible to obtain acceptable
results, and the error can be reduced as much as
desired by refining the mesh. Nevertheless, the compu-
tational effort can bécome excessive, and it is some-
tihes more convenient to introduce ad hoc finite
clements, at least for the more common shape vari-
ations.

In this note an elegant solution given in Ref. [1]} is
used, in order to study the cross sections with linearly
varying width, with linearly varying'depth-and 'with
quadratic variation in depth. !

A powerful symbollc software is used [2], and " the
stiffness matrices are generated, together with the con-
sistent load column matrix, eqmvalent to a constant
distributed load.
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Fmally, some numencal examples show the useful-
ness and ptecmon of these elements, and their conven-
ience from a computational point of view.

3. The Shape Funcﬁons

Let us cons1der a two-noded element w1th two

degrees of freedom at each node, so that the nodat dis- °

placements will be defined by:
d" = {v1, ¢1, V2, 4’2} ) ey

and ¢ = — dv/dz. This choice allows us to immediately
use the proposed elements in a more classical context,
together with the well-known cubic hermitian finite el-
ements.

The deflection v can be written as:

v=aA ‘ » ‘ (-2)'

where AT={C,, C,, Cs, Cy} is the.'éol_umnfvgétof_d : ‘
the Lagrangian ccoordinates, and « -is the row .column -

of the coordinate functions, -which is given by.the fol-
lowing expressions [1]: '

Case A—cross section with linearly varying width
according to the law

b(z) = bo + Bz 3
and ﬁ is the taper ratio,

— by '
ﬁ_ L . . T @

where by and b, .are the width at the-left end:and right
end, respectively. In this case the coordinatc,functioﬂs
are given by: e

= [1, b0+ Bz, (bo + B2) log(bo + B2), (bo + ﬂzf] O]

Case B—cross section wnh linearly varying depth
according to ‘the law

he) = ho + 1z o . ®
and # is the taper ratio
_h -k '
=—1 @)

where ho and h, are the depth at the left end and right
end, respectively.

In this case & can be written as: ' ‘
a=[1,loglho + 12k (o + 1), (Bo 12"l . @)

Case C—cross section with binomial form parabola
variation in depth, according to. the: law

@Y= WP +nz? e

and 7 is now given by

12 4172
hy'"" —hy

T (10

n=

' Therefore, in this last case:

= (1,2 4 nz, B +m2)™, (B2 + m2)7Y. an
The shape functions can be obtained by imposing:

0 =v —V0)=¢ wWl)=v, —V(L)=¢,.
12
The resulting system CA = d can be easily solved, and
the shape functions are given by N = «C~'.
The matrix multlphcatlon will give the following
results:
Case A

Ni(2) =7 2Bz ~ L) ~ B(L ~ 2 log(bo)

-+ (QboL+ BL? + pz*)log(by + BL)
=~ 2L(bo + B2) iog(bo + B2)]

M) = ppBLAL ~2) ~ byl — 2%log(b)

— 2(2boL + BL? — byz)log(bo + BL)
+ L2(bo + Pz) log(bo + B2)]
N3(2) =ﬁ [~28Lz + (Bz* — 2byL — 2BLz) log(bo)
— B2 log(bo + L)
+ 2L(bo + Bz)logbo + 2)]
Nu(2) =5 [BLafz = 1)+ (2(BL + by)
— L(Bz + by)) log(bo) — 22(Bo + L) log(bo + BL)
+L(by + ) log(bo + B2)] (13)
and
D = (2bo + BL)[log(bo + L) ~ log(b)] — 2L. (14)
Case B ;.

) .
Ni(2) =Ditho 12 {n(2ho + nz)(z — L)

+ (2ho + nL)(ho + nz)flog(hoe + nL)
— log(ho + n2)}}

N I
IDr0h 72 1AL = D — holL — 2)* log(ho)

+ 2(hoz —~ 2hoL — nL?) log(ho + L)
Lz(ho +nz)log(ho + 12)}
D (ho Ty ek + 1L+ 12)

+ (2ho + L)Y ho-+ n2)log(ho -+ nz)
— log(ho)l} (15)

Ny(2) =

Ny(2) =
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N(z) =70 —— Dh, "(;ro 1an) {nLz(z — L): o Dz = 20s* +40nLs® + 280*5°L? + 8n>sL> +4*L*.  (19)
+ L(ho + n2){log(ho + az) — log(ho)]
— Z2(ho + nL)floglho +nL) = log(ho)l}  * (16)
with - 4 The Stiffness Matrix_
D1 = @ho-+ ablogtho 1)~ loglhol =212, (D oL ot i B i o pridd
Case C—In this case it is convenient to define with respect to the spatial coordinate, and the stiffness

matrix turns out to be propottional to the outer pro-

$ = /(ho), in order to simplify the following ex- duct of the deformation .vector, according: fo the fol-

pressions: lowing formula:
L :
Ni@2) = J(Z—L)—7[4q5L3z(L2 +2Lz +32%) k=E J Kz)B"Bdz : (20)
L3Dy(s + 1z) 0
+ s L33 +34L%2 + 670 + 362%) where E is the Young modulus and I(z) is the second
+ PP LBL? + 12812 + 152L2% 4 362%) moment of area. It is then possible to write down the

: t f tiffi ix, :
+ SP(8L3 + 216122 + 134L22 + 122%) erms of the stiffness matrix, as follows

Case A
+40s*n(L? + 4Lz + 2%) + 205°(L + 22)] £E
k L) — log(b
Nala) = %L_);l AL+ 2Lz +32) = ;DL ﬂ°g(b° + L)~ log(o)l
+8IPLL+27) + 2277 (4L + 161z + 32) k12 =gpr bollos(bo + AL) 1°g(”")) ALl
+20s°9(20L + 2) + 205%] : oy ki = — I:DL [(bo+ﬁL)(log(bo +ﬂL) —log(bo)) 1]
_ L2 i, s
WO =g gL L5 Kz = o (BL(RL — 2by) + 26 1og(bn + BL) — log(bv)
+28° 2302 + 10Lz +52%) i B R b ‘
3
+20s*q(3L% + 2Lz — 22%) + 20s5(3L 22)] kag = %Z [BL(BL + 2bo) — 2bo(bo + BL)(log(bo + L)
__G+nl)'? o, - 3r 72 _ — log(b
Nai(2) = Dbis 27 M*L?ZX(L - 2) + 4sp’ Lz(L% - 2%) og( 0))]
+290° (L% + S122* - 5L - 37) as =1 2 D I [ty + BL)og(by + BL) ~ log(te)
+20°0(L - D) +205'La) O (19) — BLQbo+36L))
S kiz=—kn kan=ku ku=—ka (3))]
and
Table 1

Vertical deflection at the free end of a cantilever beam. First column: cases of cross section variation laws; second column: pro-
posed méthad with a single element; third column: proposed method with two elements; fourth column: proposed method with five
elements; fifth column: classical approach with three cubic hermitian elements; sixth column: classical approach with 10 cubic her-
mitian elements; seventh column: classical approach with 100 cubic hermitian elements; elghth column classical approach with 200
cubic hermitian elements .

Case Nonclassical B : i Classical

n=1 Loom=2 n=235 n=13" “n=10 n=100 - =200
A 315718 .. 345715 3.15715 3.28569 316841 3.157260 3.157176
B 1.54308 1.54308 1.54308 1.84350 . 1.56832 1.543330 . 1.543145
C 241424 - 241422 ‘241421 2.99927 2.46085 2414674 2.414329
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Case B
__Ebp’ ) Ebr, hoL
k11 —I—Z"D—I(Zho +nl); k= 2D,
Ebn
kiz=—knkia=— 12D (ho +nL), ka3 =—kiz;
bl [2(h + L)2

@33 =ki; ka= —k|4 kzz»— 120D,

x (1og(ho -+ 1L) — log(ho)) — 2nhoL — 3217

L o
E_”’"i-(z-”L";—”)[ 2ho(ho + nL)(oglho + nL)

— log(ho)) + 2nhoL + n*L?]

Eb(hy + nL)? o
—(1-225'3——)[2h(2,(log(hn +nL) — log(ho))

— 2nhoL+n2L? o @2)

kg =

kas =

Case C
ki = ﬂ(s + L)} (5s* + 10ns°L + 102 S°L?
D, L3 :
+ 5r]3sL3 + n“L‘*)
kip = D LZ (s + nL)3(10s + IOr]szL + 5p3sL? + ﬂ3L3)

k14 = r]L)4(10s +20r,s2L

D L2( s+
+ 157312 +4n3L3)
_ Ebs5
ki ==ku; kn =37+ (08
+5nsL+)72L*2) DT s ik
Ebs* 3103 272 v3p3
ks =55 (s + 1Ly’ (105° + 10n5"L + 5n’sL? + L) .
2 N T :
Ebs* 4 PP IS
kg == (s + nL)*(10s* + 10nsL + 3n*L?)
D,L
k33 =k1| k34 = —kKis

5 272
4= 31) L(s+nL) (10s2+15nsL+6n 55 23)

5. Consistent Load Matrix .

It is known that every element loading 'must be
reduced to a set of nodal forces, and moreover, it

is always possible to perform such a reduction .on’
the basis of approximate physical intuition. For .
example, if-the cross section variation is- not too-
pronounced, it would be reasonable’ to use the -
nodal forces corresponding to the classical cubic ef-

ement.

On the other hand, a set of conmsistent nodal forces
can be easily obtained for every.kind of element load-
ing, by considering potential energy.

In this way, the nodal force vector f consistent with
a-distributed. load. ¢ acting between the arbitrary
abscissae a and b can be written as:

b
=—.J q(z)NTdz - : (24

For the 'saké of completeness, the nodal forces consist-
ent with.a uniformly distributed load ¢ along the entire
element are:

Case A

fi=g ﬂ e 3PL2bo - ﬁL) 2(363 — B*LH)[log(bo
+ ﬁL) log(bo)l}
,2 D Tapp200bo + 2ﬂL)[l°8(bo +8L) -
—ﬂL(6b0+ﬂL)] '
fi= [2(3b2 +6ﬁboL+2ﬂ2L2)[10g(bo +BL)
- log(bo)] — 36L(2bo + 3L)]

fa=7 2 20 [2(31;2 + 4ﬁboL + ﬂsz)[log(bo +BL)

— log(bo)] ,—ﬁL(fybo +5BL). (29)

fa= log(bo)]

Case B

f =5’%[7,L(6h0 +nL) — 2ho(3ho + 2Ln)log(ho +nL)
log(ho)]]

fr =557 L*(2hg — nL) — nhoL(4ho + 3nL)

2r13LD
x [log(ho + nL) — log(ho)]

+ 2ho(ho + nLy*{log(ho + nL)* + log(ho)’]

— dho(ho + L) log(ho.+ nL)log(ho)] .

f =ﬁ[5np(6ho +51L) + 203K} + dnhoL + P L?)
x {log(hg + nL) — log(ho)il

glho+9L) 5.5
LD L2k +30L)

+ N + SnhoL? + n* L*)[log(ho + nL) — log(ho)]
— 2i3(ho + nL)[log(ho + nL)* +log(ho)’]
+ ah? (h0 +14L) log(ho +4L) log(hg)] (26)

ﬁ:
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Table 2

Vertical deflection at the midspan of a simply supported beam. First column: cases of cross section variation laws; second column:
proposed method with twa. slements;.third column:. proposed method with. four elemegnts; fourth column: classical approach with
four elements; fifth column: classical approach with 10 cubic hermitian elements; sixth.column: classical approach with 100 cubic
“hermitian elements; seventh column; classical approach, with 200 cubic hermitian elements;, eighth column: classical approach with

400 cubic hermitian elements , )
Case Nonclassical . - : Classical . L o
n=2 n=4 n=4 n=10 n = 100 n =.200 . n =400
A 3.73507 3.73507 4.02273 3.78396 3.73555 3.73519 3.73510
B 2.86824 2.86824 3.74803 3.16759 2.87143 2.86904 2.86844
C 5.11590 5.11590 7.22965 5.62399 5.12066 5.11709 5.11620
Case C nonuniform element. Finally, the last two columns

A =%(10s3 +16nS°L + 82 L3s + n°L%)

2
fr=— ﬂsz—Luos2 +8nsL + n*L?)
6D,

5 =%£(10s4 + 2495’ L + 202 L% + T’ Ls + *L*)
2

2
1 =6‘%(s +9LP(108 + 12n5L + 32 L2).
2

6. Numerical Results

As a first example, let us consider a cantilever
beam with span L = 10m, subjected to an uni-
formly distributed load ¢ = 1 m™". In Table 1 the
vertical displacement at the free end is listed, for
various cross section variation laws, and for various
finite elements discretizations. The first row refers to
a beam with unit depth and linearly varying width
between 2m at the clamped end and 0.25m at the
free end (Case A). )

The second and third rows refer to a beam with
unit width and varying depth between 2m at the
clamped end and 0.25m at the free end. In the sec-
ond row the depth is assumed to vary according to
linear law (Case B), whereas in the third row the
variation law is supposed to be quadratic (Case C).
In all cases the Young’s modulus is equal to
E = 300,000 m™.

In the second column the vertical displacement is
reported, obtained using a single finite element with
varying cross section, the third and fourth columns
contain the same displacement obtained using two
and five finite elements of the same kind.

The fifth and sixth column give the vertical dis-
placement obtained using three and 10 classical her-
mitian finite elements, respectively. The depth and
the width of each cross sections were chosen to be
equal to the middle values of the corresponding

give the vertical displacement for a mesh with 100
and 200 constant finite elements, respectively.

The increase of the accuracy and the reduction of
the computational effort is noticeable. As can be
seen, a single nonclassical finite element turns out
to be more precise than 200 classical cubic elements,
and the predicted vertical displacement hardly
changes if two or five nonclassical finite elements
are employed.

In Table 2 the midspan vertical displacement is
reported, for a simply supported beam with span
L = 10m. The first row refers to a beam with unit
depth and linearly varying width between 0.5m at
the supported ends and 2m at the midspan (Case
A).

The second and third rows refer to a beam with
unit width and varying depth between 0.5m at the
supported ends and 2m at the midspan. In the sec-
ond row the depth is assumed to vary according to
linear law (Case B), whereas in the third row the
variation law is supposed to be quadratic (Case C).
In all cases the Young’s modulus is equal to
-E = 300,000 + m~2. The columns description is the
same as in the first example.

In this case the precision and the computational
advantages of the proposed elements are even more
evident. In fact, there is no difference between the
vertical displacement predicted by a mesh with two
nonclassical finite elements and the same displace-
ment calculated employing four nonclassical el-
ements. On the other hand, 400 classical cubic finite
elements were necessary, in order to obtain an accu-
rate solution.

7. Conclusion

Three nonclassical finite elements have been pro-
posed, for the static analysis of Euler—Bernoulli beams
with varying rectangular Cross sections.
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Nonpolynomial shape functions have been employed,

using: an exact solution: given in Ref. {1]; ‘the stiffness

matrices have been calculated with the aid of a sym-
bolic package. The equivalent nodat forces, consistent
with “an’ uniformly distributed load, have also been
given. Numerical examples show that the use of these
proposed finite elements can be competitive with the
more usual cubic elemeénts.
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