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Abstract—An influence line theory for suspension bridge analysis is sketched, based on a second
order theory, which permits us to avoid some cumbersome procedures. The method is iterative, but
the convergence is quite rapid, so allowing a preliminary check of the most dangerous load
placements. Finally, a numerical example is performed, in which a recently designed one-span
suspension bridge is studied.

NOTATION

stiffening matrix
¢ vector of Lagrangian coordinates
cp displacement due to H=1
vectors of dislocations
E. Young modulus of the cable
E, Young modulus of the hangers
E, Young modulus of bridge
E, total potential energy
[ sag of the cable
g dead load of the bridge
H horizontal component of the tension due to live loads
H, horizontal component of the tension due to dead load
k concentrated stiffness
K stiffness matrix
I moment of inertia of the bridge
| central span of the bridge
I, length of the lateral cable
I, horizontal projection of I,
L strain energy
M  bending moments
n number of Lagrangian coordinates
P potential energy of the living loads
g; living loads
Rg, R¢c  hyperstatic reactions
T shear stresses
o'V first-order vertical displacements
V  first-order vertical displacements matrix
o thermal coefficient
At thermal variation
¢ single Lagrangian coordinate

1. INTRODUCTION

Usually a suspension bridge has a very large span, hence the internal forces due to moving
loads are less important than the internal forces associated with earthquake, wind and
thermal variations. Nevertheless, the problem should not be neglected, at least if the bridge is
supposed to support heavy railway traffic. The principle of superposition is still valid, so that
influence lines can be used, in order to obtain internal forces and displacements. The most
obvious method is to draw these lines by letting a unit force act at a large number of sections,
say n, and recording the effects of these n situations.

*This paper is dedicated by Dr C. Franciosi to Professor V. Franciosi who died recently.
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This procedure is rather cumbersome, because we want to know the influence lines of
internal forces and displacements at only m sections, where m is usually smaller than n, but it
is important to know them as accurately as possible.

The reciprocal theorems allow us to examine the bridge in only m loading situations, in
which a fictitious dislocation is supposed to act in turn at the m sections. Each of these
situations leads to an influence line, which now can be calculated at a very large number, n, of
sections. Basically, in the first case one is constrained to manage n x n matrices, while in the
second case it is possible to use n x m matrices. Here the influence line is well approximated if
n is large, while m is often very small, hence the advantage of the second method is evident.

The usual influence line theory neglects the stiffening effect of the additional horizontal
load, whereas it is well known that long span suspension bridges must be calculated in a
second order theory, in which this effect is taken into account [1].

In the following, a (rapidly) convergent method is presented, which allows us to use
influence line theory in a second order analysis of suspension bridges. This method can be
applied to the continuous structure, by following the classical deflection theory [1-11], or to
the discretized structure, where the reduction can be performed within a FEM context
[12-19], or in any other way [20-30]. Nevertheless, in this paper a recently proposed cell
discretization method will be used, which seems to be well suited to one-dimensional
structures. Moreover, suspension bridge analysis is greatly simplified if this type of reduction
is first performed [31-35].

2. THE USE OF DISLOCATIONS IN THE CELL METHOD

The bridge is assumed to be discretized according to the cell method [32-33]. A
dislocation in the beam is represented by n imposed values ¢; of the Lagrangian coordinates,
which can be organized in the vector c,. As an example, a continuous beam is shown in Fig.
1, in which the structure has been reduced to 13 rigid bars, connected by 14 elastic cells. The
Lagrangian coordinates are the ten rotations ¢, . . . ¢, of the ten bars indicated, while the
redundants are the reactions Ry and R of the central piers.

Let this structure be subjected to dislocations, for example to an imposed rotation ¢, at
the section S, and let this dislocation be denoted by D,, (D,, = — ¢,).

Firstly, D,, is allowed to act on the statically determinate system (Fig. 1b). To D,, a vector
¢, corresponds, which has no associated strain energy; therefore the relative rotations
between each pair of bars must be zero.

The vector ¢, causes well-defined displacements v(z). In fact, the statically determined
structure has 12 Lagrangian coordinates, the ten rotations, sz and s¢, but they are linked
together by 12 conditions:

@;=0 ifis#4,

¢;=-—D, ifi=4,

.20 (1)
B— Y

sc=0.

The displacements s; must be removed by the hyperstatic reactions Ry and R.. These
reactions cause the displacements v,(z), which can be divided into two sets, v,(z) and v} (2),
due respectively to the rotations ¢, and to the displacements —s;. The first set v/,(z) occurs on
the actual structure (Fig. 1c) the second one is accompanied by zero rotations (Fig. 1d).

The solution is given by the sum of these three situations, as illustrated in Fig. 1(¢). Finally,
it is possible to write:

c=c¢; + ¢,
! " (2)
v(z)=0,(2) + v.(2) +v¢ (2).
The strain energy of the system can be written as:
L=1%vTRv, + LvT Rv, + $v." Rv! + vT Rv, + vF Rv + v,T Rv!,

=L +L,+Li+L;;+Liz+L,;. 3
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Fi1G. 1. The dislocation scheme in the cell discretization method.

The displacements v,(z) cause no strain energy, because everywhere ¢ =0. Hence the terms
Ly, L, and Ly, are zero.
The set v,(z) causes the strain energy:

L,=%cTKe,, 4

where K is the stiffness matrix of the real structure (Fig. 1a). The set v”(z) generate the strain
energy L,, due to the rotations of the cells; this energy is a quadratic form of the
displacements s;, and it is independent on the c,.

Finally, the energy L, exists, due to the work of the moments M at the cells in Fig. 1(c) on
the rotations ¢ in Fig. 1d. One has:

n
Ly;=— Y Rjs;, (5)
i=1
where R are the reactions generated by the rotations c, on the real structure. These reactions
can be expressed as a function of the Lagrangian coordinates, by means of the vectors r;
Rj=r]ec, (©)

and therefore:

Ly3=— '21 ri ces;. Q)
i=
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The potential energy P is zero, and the total energy E, coincides with the strain energy.
Therefore we have

n

E,=%4cTKc,— ¥ rTe.s;+ L,. 8)
=

j=

The equilibrium conditions give the system:

Ke,= Y sjr;. 9)

3. USE OF THE DISLOCATIONS IN SUSPENSION BRIDGE ANALYSIS

In Fig. 2 a simplified scheme of a one-span suspension bridge is given. The structure is
statically redundant, and the redundancy is assumed to be the horizontal tension of the cable
due to live loads H. The cable is supposed to have a parabolic shape, and its coordinates y(z)
are referred to the straight line EF:

4
o)=L 1), (10
The beam axis is also assumed to be parabolic, and its coordinates are referred to the straight
line AB:

tz) = ‘;Trz(l—'z).. (11

The n hangers divide the beam into n+ 1 bars, whose length is equal to a=1/(n+1). The
Lagrangian coordinates are the rotations of the first n bars. We make the same assumptions
as in [31], in particular the tower is rigid, and the cable can move freely on the saddles at E
and F. The horizontal component of the cable tension due to the dead load is H,, while the
horizontal component of the cable tension due to additional loads is H.

The rotations c, of the statically determinate structure cause a horizontal displacement wp,
at D equal to [31]:

Wp = WTces (12)
where
n
8 n—1
17 n-2 |. (13)

The horizontal force H acts on the structure with no rotations, because the rotations c, are
already acting with their actual value. This structure will be called a “rigid beam structure”.
The value of H must be given by the following congruence equation:

Hep+wle, =0, (14)
where cp is the flexibility at D of the rigid beam structure, i.e. it is the horizontal displacement
of such a structure due to H=1. It is possible to write [31]:

I ntl a ndl Jfre+r—y—t;

lrz EcAc + i=zl E‘.A‘.COS3 ai + ,‘=Zl (tg ai - tg ai—l) EpAp ’ (15)

CD=2

where the meaning of all the symbols is given in the notation, and «; is the inclination of the
cable at the ith bar. The value «; is given by

(16)

Yi— Vi1
tgo;, = ——————.
84 a
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F1G. 2. The suspension bridge model.

Equation (14) furnishes:
H=—-bTc,, amn

where bcp = w.
A comparison between equations (6) and (17) shows that, for the sole unknown H:

r=->b (18)
and the system (9) can be written as:
Kc, = —whb, 19)

where w} is the displacement due to the imposed dislocation.
For example, a uniform thermal variation At causes a horizontal displacement equal to:

wh = al* At, (20)
where [* is given by:

lb n+1
=22+
I,

Every other dislocation is defined by the vector c*, and is associated with a displacement w
of the statically determinate structure given by

n+1
I* 24 Y (tga—tgoy_ ) (f+cHr—yi—1). 1)
2

Sicos?a; S

wh = wlc* (22)
which can be written as:
wE = cpbT c*. (23)

The most general equilibrium condition, in the presence of applied forces g, thermal
variation At and dislocations c* is given by the following system:

Ke,=VTq—al*Ath — cp(bT c*)b. (24)

In this equation the matrix ¥ allows us to calculate the displacements of the cells, according
to the product:

v="Vec. 25)

In the second order theory, it is necessary to take into account the second order part of the
potential energy P. We have a first order term, which is due to the forces g:

PW=_—yTg=—cTVTq (26)

MS 31:8-C
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and a second order term, which is due to H, + H. The second order displacement wy, is given
by:
a
w = —EcT Be, 27

where B;;=1ifi#jand B; = 2.
It follows that the second order part of the potential energy P is equal to:

P®=(H,+H )g(ce +c*)" B(c. +¢c*). (28)

Finally, the system (24) can be written as:
[K+(H, + H)aBlc, = VT q — al* Atb— cp (bT c*)b— (H, + H)aBc*. 29)

The additional force H can be obtained in the following way. The statically determinate
structure suffers a displacement wy, given by:

wp = cpbTc, + al* At +cpbT c* ‘ (30)
and H must be able to annihilate such displacement on the rigid beam structure:
Hep +wp =0. (31)
From this condition we can easily obtain H:
He—bTc,—bTer ~ AL (32)
Cp

4, THE RECIPROCAL THEOREMS IN THE PRESENCE OF ‘MIXED’ FORCES

It is well known that the reciprocal theorems (Maxwell, Betti, Volterra, etc.) can be proved
even in the presence of axial forces, but these forces must remain constant. The theorems are
written referring to the sole transverse loads and to their effects in the presence of the axial
forces. .

Sometimes we are compelled to deal with axial forces, whose corresponding displacement
has also a first order part in c: '

we=wlc+cT Wee. (33)

In general, a force F can be classified according to the nature of the corresponding
displacement s. So we have:

F is a transverse force <« s=s5Tc¢
F is an axial force « s=c7Sc
F is a mixed force « s=sTc+cTSc.

It is then possible to prove the following proposition:

Let s, (z) and s, (z) be the displacements of a structure subjected to the forces {G, S, F, } and
{G, S, F,} respectively. The value G is an axial force, S is a mixed force, F, and F, are
transverse forces. The reciprocal work of the set {F;, S} due to the displacements s,(z) is
equal to the reciprocal work of the set {F,, S} due to the displacements s, (z).

If the first set includes also the dislocations D,, and the second set includes also the
dislocations D,, let C; and C, be the corresponding internal forces. In this case the work of
theset {G, S, F,, C,} due to s,(z) and D, is equal to the work of the set {G, S, F,, C,} due to
5y(z) and D,.

5. INFLUENCE LINES IN SECOND ORDER ANALYSIS

Let us consider the system in Fig. 3. The dislocation D,,= —1 is applied at the section S,
and the second reciprocal theorem allows us to write

1
M= J qu, dz. 34)

0
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F1G. 3. A concentrated dislocation of rotational type.

If q is a uniformly distributed load, then
MSmax = qA * ’ (35)

where 4% is the positive area of the influence line v, (2).

The structure in Fig. 3 has a roller at D, and v,(z) is calculated on the real structure.
Therefore, it must be w,, = 0, while it will be w,p = 0. The values v,(z) and w;p can be
calculated with the aid of the system (29), where g and At are zero, and the vector c* is given
by:

-—% if i<ig

cF= , (36)
¢ if i>i

i 1 S5

where i is the index of the generic bar, and iy is the index of the bar to which S belongs.

The value of H should be that which is generated by the load g on the real structure (Fig.
3b). Initially we set H=0, and the iterative scheme can start: the influence line is calculated
on the structure in Fig. 3(a), and the load q is positioned. Then the resulting additional cable
tension H due to q is calculated (Fig. 3b), and the new influence line can be detected, and so
on. The iterations end when the difference between the total area of the graph v, (z) in two
successive cycles is negligible. In this case we can say that H is the same in the two situations
in Fig. 3, and equations (38) hold.

The strain matrix K is calculated on the real structure, in which wp = 0. On the other
hand, it is w;p = 0, hence the solution v, (z) of the system (29) refers to the real structure with
a dislocation equal to w,p. This solution is equivalent to the solution of the statically
determinate structure with the force H, + H at the roller.

If the influence line of the shear stress has to be calculated, then it is more convenient to
refer to the bar, instead of the section. The dislocations c*, in fact, have to respect the
continuity of the mechanism. If ¢ is the index of the examined bar (Fig. 4).

Mt+1 _Mt

T,= =%

(37

Let the dislocation set be given by D,, = 1 at the left end of the bar, and by D,, = —1 at the
right end. Therefore:

1 e
nyl iRt
ct = (38)
n p .
Tae Tist
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F1G. 4. A concentrated dislocation of shear type.

The second reciprocal theorem allows us to write:

1
MH—l_Ml:'[ qv, dz 39
0
from which
1 !
n=_qua. (40)
ajo
If q is a uniformly distributed load, then we have:
A +
Toax=4— (41)
a

If the load q acts on the structure in the presence of a thermal variation At, then equation (34)
reads:

n 1
—aAt Z Nii) li = j qvl dz+Msz Dm (42)
i=1 0
from which:
1t [ alt & .
Mg, = —H’;Lqm dz—ﬁ:i;l NI, 43)

where N{} are the first-order normal forces in the Lagrangian coordinates ¢;, and they are
defined by means of the horizontal force H,. This force is given, to a first approximation, by

wle*+wle, + HY¢, =0 (44)
which is equal to
bTc* + bTc, + HV=0. 45)
On the other hand:
*
bTc* + b7c, + H= 20, (46)
Therefore, it follows:
*
HY =H-"2, : @7)

Finally:

Y N = HOI® (48)
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and equation (43) becomes (D,, = — 1)

1
M52=J qu,dz + aAt H{V I*, (49)
0
A positive H'" value corresponds to a negative D,, value. Hence, a positive thermal variation
leads to an increase of the bending moments.
If a set of fixed forces f(z) is also acting on the structure, then equation (42) becomes:

1

1
—aAtH [* = J fo,dz + j quydz + Mg, D, (50)
0 0
or (D, = -1y

1 ]
Mg, = f fo,dz +f qv, dz +aAt H{V*, (51)
0 0
Therefore, the greatest (smallest) moment is obtained by placing the load g at the positive

(negative) v, (z) values:
1

Mgomax =947 + valdz+aAtHﬁl’l*, (52)
o

1
Mg min= 9471 + f Soidz +aAt H{PI*, (53)
0
where A* and A~ are the positive and negative areas of the v, (z) graph.

6. NUMERICAL EXAMPLES

A recently designed suspension bridge is examined which will link Sicily to Italy. The
fundamental geometrical data are given in Table 1.

The graph of the greatest and smallest bending moments is reported in Fig. 5, in which the
bridge was divided into 42 rigid bars, while the moments were calculated in 24 sections.

The influence line of the bending moment at the section z=550 m is sketched in Fig. 6 for
three different discretization levels. In the first case the bridge was divided in 12 bars, and the

TABLE . GEOMETRICAL DATA OF THE MESSINA
BRIDGE (COURTESY OF PROF. FINz1 [36])

1=3300 m

f=287m

A,=5.856 m?

A, =7491 m?

I1=6.019 m*
E,=E,=21x10°tm™?
E =18x10°tm™2
g=9%tm™2

g=20tm™?

At=25°C

MAXIMUM BENDING MOMENTS

F1G. 5. Greatest bending moments of the Messina bridge.
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F1G. 6. Three influence lines for three different discretization steps.

moment was equal to 4902 tm, if the structure is divided in 24 bars, then the moment is equal
to 5194 tm. Finally, a subdivision into 42 bars leads to a moment equal to 5258 tm. These
convergence results justify the use of 42 rigid bars in the moment graph.

7. CONCLUSIONS

The influence line theory for suspension bridges has been critically reviewed and the
reciprocal theorems shown to be valid if certain hypotheses can be satisfied. It is then
possible to use the so-called Land method, in order to draw directly the influence lines at
certain sections, by imposing a concentrated dislocation. The influence of thermal variations
can also be considered. Finally, a recently designed suspension bridge has been examined,
which should have the longest span of the world and the graph of the greatest bending
moments has been calculated.
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