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Abstract

In this paper some vibration problems are solved by means of the optimized Rayleigh and Timoshenko quotients,
and the first few. eigenvalues are approximated. The iterative method of Ku is also used in order to deduce close
lower-upper bounds, according to the Ly formula. Extensive use of symbolic language allows us to. obtain closer
approximations than the usual ones, because multiple-parameter quouents can be employed, and more than one

iteration can be performed.

Two archetypical examples will be used throughout the paper, i.e. the truncated and complete wedge beams, and
constant reference will be made to available results from the literature. © 1998 Elsevier Science Itd. All nghts

reserved © 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Critical loads and free vibration frequencies of
beams subjected to-axial loads must be often calcu-
lated, at least as a preliminary step toward a bifur-
cation analysis. The problem can be generally reduced
to a linear eigenvalue problem, and it is necessary to
enlighten the influence of various structural coatrol

parameters on the eigensolutions, so that coincident

eigenvalues or coalescing frequencies can be detected.

All the analytical solution methods-are ideally suited
to this end, but they are bounded by the weli-known
unavailability of general methods for solving linear
equations with nonconstant coefficients. Actually, the
range of analytical solutions is limited to few variation
laws of the cross-section and of axial load distri-
butions, so that these solutions can be only used as
benchmark for more general approaches.

Numerical methods, on the coatrary, have a general
range of applicability, and can virtually solve every

stability or dynamic problem. Nevertheless, if it is -

necessary to perform a parametric study, then it is
necessary to perform a large sample of numerical simu-

lations, which in turn can only give an approximate
answer to the problem at hand.

The semianalytical method (henceforth SA\I
method) seems to share the advantage of both the ana-
lytical and numerical methods. In fact, their range of
applicability is the same as for the numerical methods,
yet a parametric study is as simple as in the analyticat

- approaches. Moreover, the potentialities of the SAN

methods have been tremendously enlarged by the wide-
spread availability of symbolic languages on personal
computers, so that it is not difficult to predict a
renewed interest in the SAN methods.

f

2. Refined SAN Methods

The first approximate formula for the free vibration
frequencies goes back to Rayleigh {I], and his
approach is still adopted in numerous engineering
fields, as structural engineering, mechanical engineer-
ing, seismic analysis. According to the Rayleigh quoti-
ent, an upper bound to the first fréquency is obtained,
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and its closeness to the true result is strong)y influ-
enced by the chosen trial function.

An improved version of the Rayleigh quotient was
given by the same author in 1894, [2], who used a trial
function defined by a polynomial with the noninteger
undetermined power (the so-called non-integer power
Rayleigh method). In this way a nonlinear optimization
problem is generated, whose solution can be usually
reached only with numerical methods.

Although the optimized Rayleigh quotient was suc-
cessfully used by Stodola in 1927 [3], the intrinsic
mathematical difficulties led to neglect this powerful
approach, which was recently re-discovered by
Schmidt and Bert (4], {5}, and consequently the non-
integer power Rayleigh method is now known as the
Rayleigh-Schmidr method.

Later on, a different implementation of the same
quotierit was proposed by Elishakoff [6), in which an
undetermined multiplier rather than un undetermined
power is used (non-integer multiplier Rayleigh method).
It seems that this choice lead to simpler formulae, and
even to more accurate results [7), [8). -

A dual approach to the Rayleigh quotient was pro-
posed by Timoshenko [9), who used the total comp-
lementary energy instead of the total potential energy,
in order to obtain an approximation to the critical
loads. In this way another quotient can be defined,
which is always an upper bound to the true result, and
it turns out to be always not greater than the corre-
sponding Rayleigh quotient [10].

However, the original Timoshenko quotient was
readily usable only for statically determinate structures,
where the bending moment can be immediately calcu-
lated. More recently, the method was extended to
redundant structures, to general three-dimensional con-
tinuum problems, and to dynamic analysis [11), [12].

Finally, it should be noted that the Timoshenko

quotient can be optimized exactly in the same way as
the Rayleigh quotient, giving rise to the Timoshenko~
Schmidt quotient.

A totally different 1mproved version of the Rayleigh
and Timoshenko quotient was proposed. by Ku [10].
According to this method, a (usually simple) trial func-
tion is used as starting point for an iterative procedure
which generate a sequence of decreasing upper bounds.

This approach has been originally proposed in the
stability analysis of uniform or tapered beams, and has
been subsequently applied to frequency analysis and
stepped beams. Its convergence rate is usually quite
satisfactory, and from an engineering point of view,
the first few iterations lead to acceptable results.

Both the above-mentioned refined methods furnish
upper bounds, while it is often necessary to obtain
even a close lower bound, at least in the stability
analysis. Basically, all the lower bound formulae can
be divided into two groups; the first one goes back to

Temple [13], and requires the exact knowledge of the
second eigenvalue, the other one is based on the values
of the Timoshenko and Rayleigh quotients and is
extremely more manageable. both from a numerical
and an analytical point of view.

The first Jower bound formula of the second group
seems to be the Shreyer-Shih formula [12], which has
been subsequently used by Popelar and improved by
Ku and Hanna and Michalopoulos {14]. More recently,
a substantially new approach was used by
Schmidt [15], [16] and Ly [17), who proposed very sat-
isfactory lower bound formulae.

Finally, it is important to stress that all the formulae
of the second group lead to close lower bounds, if they
are used hand by hand with a refined SAN method.

In this paper a powerful symbolic language [18] is
used to obtain very accurate approximations to some
vibrations problems. The use of symbolic software
allowed us to apply the non-integer multipher
Rayleigh method with rwo or more undetermined mul-
tipliers, so that a convergence curve can be sketched.

3. A Convergence Curve

As a first example, let us examine the dynamic beha-
viour of a propped cantilever with rectangular cross-
section and linearly varying height. (Fig. 1). so that
cross-sectional area and second moment of area are
given by:

A(z):Ao(Hfi;) 1(:):10(1+c§)3. m

respectively, where [ is the span of the beam, and ¢ is
the taper ratio.

The differential equation of motion of this beam can
be solved in terms of Bessel functions [19], but the
resuiting eigenvalue problem is quite tedious to solve
numerically.

On the contrary, the optimized SAN methods
quickly give a close upper bound to the true frequency.
The Rayleigh quotient and Timoshenko quotient can
be written as:

o
wh = f EN'?(z) dz / f pA(z) dz, %)
(4] 0

and

,_pr,,z()d,/f”‘—“ o, )

respectively, where E is the Young modulus, p is the
mass density and m(z) is an admissible moment
function {10].

The crucial step is the choice of the trial function
v(z), which must at least satisfy the geometrical bound-
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L
Fig. 1. Propped cantilever beam with linearly varying height.

ary conditions. However, the underlying philosophy of
the refined SAN method allows the choice of the sim-
plest trial function, which is subsequently refined as
many times as necessary. An iterative procedure which
allows this kind of refinement has been proposed
in [20].

In this case, we start from the function:

Wz) = 2(I - 2), O
which obviously satisfies the conditions:
v0) = v'(0) = w()) = 0. &)

If ¢ = —9/10, a classical approach gives an approxi-
mate non-dimensional frequency equal to:

p4d 4
R="=wyl' = 528, :

EI“’R" 108.528 (6
if the Rayleigh quotient is used, whereas the corre-
sponding Timoshenko approach behaves much better,

and results in a closer upper bound to the true fre-
quency:

P4 , Y
T= Ewrt' = 78.3470. )

A lower bound can be immediately deduced, by using
for example the recently proposed Ly formula {17}

T .1 1\
L=R(}—2F+2F> , (8)
and turns out to be equal to:
L = 71.33596. ©)

The exact value is equal to 74.4272.
A systematic optimization procedure is then based
on the trial functions:”

valz) = X - z)(l + Zn:t,-:‘). (10)

=l
For each n, the following equations:

aR .
'5:7_0 i=1,..n, (1

must be solved, in order to find the unknown multi-
*pliers ¢;, and then the optimized Rayleigh quotient can
be immediately found. A similar procedure can be
used for the Timoshenko quotient, and the conver-
gence curve as in Fig. 2 can be sketched.

In the same figure the convergence curve of the
lower bound is also given, as obtained by using the Ly
formula. The good performance of the Timoshenko
quotient can be easily observed, whereas the Rayleigh
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Fig. 2. Convergence curve for a tapered propped cantilever beam: approximate.
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quotient shows a slugg:sh oonvergenoc to the true
result.

4. The Truncated Wedge Beam

The optimized quotients can also be used to ap-
proximate higher eigenvalues, as indicated in [21] using
a Galerkin approach. In the foliowing, a similar pro-
cedure will be adopted in order to obtain upper
bounds for the first four frequencies of a cantilever
beam with linearly varying breadth and constant
height (Fig. 3).

More precisely, if ¢ is the ratio between the breadth
at the right end and the breadth at the left end, then
area and second moment of area will vary according

to the laws:
1-c:z l—cz
. 7) 1) = lo(l + p 7). (12)

and Ao, Jo are the cross sectional area and inertia at
the left end, respectively.

This case was treated in detail by Naguleswaran [21],
and its results can be considered exact, and therefore
used as benchmarks.

On the other hand, we shall employ optimized ver-
sions of Rayleigh-Ritz and Timoshenko-Ritz
methods, with one unknown multiplier, so that upper
bounds to the true results will be obtained.

The following trial functions will be used:

Wz) = (@2 + a7 + @zt + a®¥1 + n2), 13)

A(2) = Ao(l <+

where g; are the Ritz coefficients, and 1 is the optimiz-
ation multiplier.

If the Rayleigh quotient (2) is employed, then ‘the
following eigenvalue problem is obtained:

Ik — w’m| =0, , (14)

< - S—

L
Fig. 3. Cantilever beam with linearly varying breadth,

where the entries of the (symmetric) stiffness matrix k

and mass matrix m can be obtained by means of a

straightforward application of the Castigliano theorem:
202 + 2+ 81y + dety + 96 + 3cd)

kn= p ) (15)

_2(20 + 10c + 751 + 25¢n; + 728 + 18c13)

(16)

k2 5
ks =4(15+ S5c + 561) + 14cty + 5017 + 10c1;)' a7
5¢
Kyg = 4(28 + ¢ + 1051, + 21ery +901f + 15cr})! as)
Te
2 2
k23=6“5+5‘+48" +l2¢'1|+40t,+8c11), (19)

Sc¢

4(252 + 63¢ + 7701, + 154cty + 60013 + 100c?)

ko = 35¢
(20)
fy — 2140+ 280+ 201 + 70ct; + 31513 + 45¢13),
u= ¢
@n
4(420 + 84c¢ + 12007, + 200c1; + 8751‘ + 125¢83 )
ky =
35¢
22) -
por = 10144 + 24c + 3991, + S7er, + 28073 + 35¢13)
=
2le
(23)
20(105 + 15¢ + 2801, + 35ch +1892 + 2m—)
K =
2le
(24)
and:
1,1, 4 B
G T T +28+4c 25)
72 + 12¢ + 1261, + 18cty + 5683 + Tcfy
12 753, , (26)
1 41 Iz ,2
'"”‘28+4c+1s+9c+45+5c @n
__ 440 + 55¢ + 7921, + 88cry + 36073 + 36¢r;
i = 1980¢ - @
my =my3 m3 =M, 29)
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198 + 22¢ + 360 5¢8 -

g = : Vc+’ 1 ;—9:(4)?:1 +“16-5.:%+1 o ey
my3 = my, . &)))
12 o o0 828 :
me =t et BT et e - (3

_ 1 I 5} 44 I% f%
M=ttt nc ot (33)

If the Timoshenko approach is preferred, then the ap-
plication of Eq. (3) leads to the same eigenvalue pro-
blem, but now the entries of the stiffness matrix look
more complicated, and are not given here.

However, both above-mentioned procedures can be
easily translated into a symbolic program. For
example, in the Appendix 2 simple Mathematica note-
books are reported, which can generate the matrices,
calculate the eigenvalues and solve the optimization
problem. :

In both the cases, the four (real) eigenvalues w? of
the symmetrizable problem (14) are functions of the
unknown multiplier ¢, and can be optimized with
respect to it, by imposing:

3w} .
Tll =0. 34)

It is perhaps worth noting that other boundary con-
ditions can be easily treated, modifying the second row
of the notebooks, whereas other variation laws of the
cross section can be dealt with by modifying the third
row, where area and inertia are defined.

In Table 1 the first four non-dimensional frequen-
cies:

" [pd(heie
Q= D . (33%)

have been reported, as obtained with the Rayleigh
approach and with the Timoshenko approach. [n both
cases, the values of the unknown multiplier has been
given in brackets.

For the sake of comparison, the first three frequencies
are also given, as deduced from Naguleswaran [22]. It is
immediately seen the excellent performances of the
Timoshenko method, whereas the Rayleigh quotient is
less satisfactory, at least for the higher eigenvalues.

Another approach which allows a substantial refine-
ment of the eigenvalues goes back to Ku {10}, who
employed an iterative method to approximate the first
critical load of beams. The same approach was also
used to obtain the first frequency [12], and it will be
here generalized to give refined upper bounds even for
the higher eigenvalues.

Let us consider a proposed cantilever beam with

"varying area and inertia: according to Eq. (12), and let

us use the following trial functions: ~
232 ~ 5z +22%)
n(z) = —T—— , 6)

—5B + 197 — 22122 + 82
Vz(:)=z2( 5B+ 918215 22 + 8 )‘ o7

which both satisfy all the boundary conditions. From
the assumed shape function v(z) = a,v\(2) + ayv(2) it
is necessary to deduce an admissible bending moment,
by imposing an equilibrium condition and a compat-
ibility condition, as indicated by Ku.

After some algebra, the resulting moment is given
by:

__A(l=2 . B
m(-)—-“m-+(l;—1)c- (38)
where:

A =P (88a, + 52ca; + 10a; + cay)
+ Pz(124a; + 44ca) + 19ay + Tcaz)
v+ B:2(108a, - 24ca; + 27a; + 18cay)
+ P2(40a; — 152ca, + 34a; + 34cas)
+ {z*(—~80a; + 80ca; + 40a; — 120caz)
+ 60222 (c - 1),

= —~ 650324, + 4166356¢ca; — 1101324c%a,
+ 1513120’ a) — 1116220¢%a,
+361032c%a; + 66444¢8a; — 110976¢"ay
+ 42180c%a; — 5880c°a; — 6620a;
+48532ca; — 152187¢* + 260680c’a;
~243775¢*as + 123970¢%a — 33957c%as

A+ 2112 ay + 1595¢%a; — 350c%a; + 36960az log(!)

— 178080cay log(/) + 317520c2a, log())
- 235200c%a, log(/) + 38800c*a, log(/)
+ 4200a> log()) ~ 24360ca> log(/)
+ 55860c%a1 log() — 58800¢° a; log(f)
+ 14700¢*a; log(l) — 36960a, log(c/)
+ 178080ca; log(cl) — 317520¢a; log(cl)
+ 235200¢%a, log(cl) — 58800ca, log(c/)
— 4200a> log(cl) + 24360ca- log(c))
~ 55860c*as log(cl) + 58800c’ s log(cl)
— 14700¢*ax log(c)),

C = 705600(c — 1)*c(3 — dc + ¢* — 2 log(l) + 2 log(cl)).
: 1)
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Table 1

First four non-dimensional frequencies for a cantilever truncated wedge beam

¢ Q; "Rayleigh-Ritz Timoshenko-Ritz Naguleswaran

0.05 Q 1.58741 (—0.407194) 1.54561 (—0.629215) 1.5456
Q. 17.2118 (—0.669764) 16.9963 (—0.771774) 16.9955
o2 57.0052 (—0.687538) 55.7997 (—0.734306) 55.7660
Q 127.056 (—0.880641) 114.778 (-0.957276)

0.1 ! [o}} 1.82404 (—~0.381452) 1.81132 (—0.437251) 1.8113
[o1) 17.9453 (—0.618561) 17.8806 (—0.720183) 17.8803
Q, 57.7832 (—0.683023) 57.1402 (—0.715843) 57.1359
Q4 127.042 (—0.879964) 116.350 (—0,952997) '

0.15 o) 2.01316 (~0.357308) 2.008364 (-~0.437251) 2.0084
Q 18.5107 (—0.523559) 18.4885 (—0.659681) 18.4884
Q, 58.4557 (—0.678802) 57.9740 (—0.772651) 57.9685
Q, 127.0603 (—0.87933) 117.2840 (—0.949398)

0.20 Q 2.17288 (~0.333606) 2.17086 (—0.304404) 2.1709
Q, 18.9668 (—0.235934) 18.9589 (—0.570098) 18.9589
Q 59.0452 (—0.674876) 58.5687 (—0.819771) 58.5574
Q 127.101 (-0.878731) 117.940 (—0.946183)

0.25 Q, 2.31237 (~0.309274) 2.31146 (~0.304404) - 2.3115
Q, 19.3473 (0.0022311) 19.3445 (—0.140196) 19.3445
Qs 59.5679 (=0.671216) 59.0249 (—0.837547) 59.0079
Q, 127.158 (—0.878162) 118.444 (~0.943235)

0.30 Q, 2.43696 (—0.283772) 2.43653 (—0.329689) 24365
Q, 19.6727 (0.177421) 19.6718 (—0.433603) 19.6717
[} 60.0361 (—0.667814) 59.3924 (—0.848707) 59.3704
Q 127.227 —0.877619) 118.851 (—0.94045)

0.35 Q 2.55002 (—0.25204) 2.54981 (—0.262513) 2.5498
Q. 19.9565 (0.321097) 19.9562 (—0.479058) 19.9561
Q3 60.4590 (—0.664572) 59.6988 (—0.856175) 59.6727
Q 60.4590 (—0.664572) 119.194 (—0.937813)

0.40 Q, 2.65383 (~0.21454) 2.65372 (—Q.262267) 2.6537
Q, 20.2079 (0.444322) 20.2078 (—0.508877) 20.2077
Q 60.8399 (—0.58824) 59.9612 (—0.761392) 59.9317
Q 127.389 (—0.8766) 119.491 (—0.935339)

045 e 2.74500 (—0.156375) 2.74994 (—0.196222) 2.7499
Q 20.43349 (0.552142) 20.4334 (—0.526794) 20.4332
ol 61.1733 (~0.532459) , 60.1905 (—0.864426) 60.1582
Q4 127.477 (~0.876116) 119.752 (—0.932823)

0.50 Q 2.83972 (~0.0918137) 2.83969 (—0.0894527) 2.8397
Q, 20.7020 (~0.466242) 20.6379 (—0.53725) 20.6376
Q 61.4671 (—0.48793) 60.3941 (~0.869043) 60.3597
Q 127.568 (—0.875651) 119.981 (~0.931467)

0.55 Q, 2.92390 (—0.0349454) 2.92389 (—0.0894527) 2.9239
Q. 20.8957 (—0.480278) 20.8248 (—0.545327) 20.8245
Q, 61.7283 (—0.448311) 60.5748 (—0.87497) 60.5414
Q4 127.662 (—0.875201) 120.168 (~0.930265)

0.60 ) 3.00327 (0.00775039) 3.00326 (-0.0894527) 3.0033
Q, 21.0732 (—0.49034]) 20.9971 (—0.537744) 20.9967
Qs 61.9623 (~0.412059) 60.7244 (—0.907011) 60.7072
Q 127.757 (-0.874765) 119.825 (—0.931096)

From this, it is now possible to calculate the strain |

energy: T= 3 f; pAV dz. 43)

L=

and the kinetic energy:

¢

(42)

The stiffness matrix and the mass matrix can be im-
mediately deduced, and the resulting eigenvalue pro-
blem can be solved to give the first two approximate
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frequencies. If a refinement is needed, the moment can
be integrated twice, and a new trial function is
obtained, which in turn generate a new admissibie
moment, a refined strain” energy and kinetic energy,
and a second approximation of the first two frequen-
cies.

In principle, the procedure' can be repeated as
needed, but usually two iterations can lead to very
complicated formulae, which become unmanageable.

For the sake of comparison, in Table 2 we have
reported the exact results, as given by Naguleswaran,
the first two iterations of the Ku approach, and the ap-

5. The Complete Beam

A particularly intriguing case is given by the so-
called ‘complete beam’, in which the cross section
vanishes at one end. In this case the sharp end must be
free, because it cannot sustain any bending moment or
shear force, and the only significant structural system
is the cantilever beam.

Moreover, some numerical and analytical
approaches tend to give wroag results, because of nu-
merical instabilities associated to the integrand beha-
viour of the energies near the sharp end. It is therefore
interesting to compare some approximate results with

the benchmark reported in (22).

In Table 3 a large set of SAN results have been
given and compared with the exact results. More pre-
cisely, in the first row the first two eigenvalues are

proximate values as given by a Rayleigh-Ritz opti-
mized method with two undetermined multipliers.
In this latter case, the following trial function has

been used: written down, as obtained by means of a one-par-
ameter Rayleigh optimization approach and trial func-
Wz) = (avy + aava)(1 + 4z + 0222, 44) tion:

, W2) = (a2 + @Y1 +42). (45)
It is worth observing that the Ku method is extremely
prone to numerical errors, so that exact calculations
must be carried out, or a large number of significant
figures must be used (up to 32 bit precision). On the

The following three rows indicate the improvements
which can be obtained by using an increasing number
o'f unknown muitipliers. The trial functions are equal

to:
other hand, it is faster than the two parameter S , , )
Rayleigh optimization approach. V) = (@z" + @)1 + 1z 4+ 062), (46)
Table 2
First two non-dimensional frequencies fora propped cantilever truncated wedge beam .
¢ Q; Rayleigh Ku lst iter. Ku 2nd iter. Naguleswaran
0.05 Q, 12.2166 12.0749 12.0712 12.0698
Q, 45.6785 45.9425 45.4684 45.3869
0.1 Q, 12.7579 12.7163 12.7155 12.7143
Q, 46.6172 46.9248 46.6618 46.5654
0.13 Q; 13.1663 13.1521 13.152t 13.1512
Q, 47.3245 © 37.5247 47.3649 47.2743
0.2 Q, 13.4903 13.4848 13.4852 13.4845
Q, ’ 47.8718 47.9484 47.8467 47.7672
0.25 | Q, 13.7558 13.7536 13.7539 13.7535
Q, 48.3046 48.2708 48.2038 48.1361
0.3 Q, 13.9790 13.9781 13.9784 13.978!
Q, 43.6530 48.5279 48.4821 48.4255
0.35 Q 14.1705 14.1699 14.1701 14.1699
Q, 48.9379 48.7399 48.7069 48.6601
0.4 Q, 14.3373 14.3367 14.3367 14.3362
Q, 49.1744 48.9192 48.8933 48.8550
0.45 Q 14,4843 14.4834 14.4834 14.4832
Q, 49.3721 49.0738 49.0513 49.0201
0.5 Q, . 14.6149 14.6138 14.6137 14.6136
Q, 49.5399 49.2092 49.1874 49.1622
0.55 Q, 14.7320 14.7308 14.7306 14.7301
Q 49.6834 49.3293 49.3064 49.2861
0.6 Q 14.8375 14.8364 14.8361 14.8342
Q, 49.9148 494370 49.4115

49.3955




34 M.C. Bruno et al. | Computers and Structures 69 (1998) 27-35

Wo) = (@2 + @)1 + 1z + 0 + 620 47

W2) = (@12 + a2 + axz*)(1 + 112). (51
Wo) = (@ + a1+ nz+ 67 + nt 4 uzt),  (48) The stiffness matrix will be given by:
respectively. - , 64548 + 906281, + 318977}
It is also possible to use the Chebyshev polynomial, ky = 29396000 .
i{)slcad of the power series. so obtaining the trial func- ) 589082+ 8503951, + 30734273 .
tions: 2= 648648000 (52)
ve) = (@2 + @)1+ ) LT ). 49
@)= - )< ; ¢ )) @) 1525069 + 22485121, + 82854517
kiz = 2270268000 ’ (53)
if the Chebyshev polynomials of the first kind are
used. or:
, o = 20318389 + 301195161, + 111795761 (54)
W) = (@2 + a3:3)(1 + Z: l,-U,-(:)), (50) . 31783752000 '
=]
if the Chebyshev polynomials of the second kind are Kon = 7529879 + 113896031, + 431078077 (55)
employed. = 15891876000 ’
In the next six rows the first two eigenvalues are
reported, as obtained for # = l.n = 2and n = 3, and 89436608 + 1379449601, + 5324292513
employing in turn the T; and the U; polynomials. It is n= 52370016000 L (56)
interesting to note that, in this case, the Chebyshev
polynomials of the first kind always behave better than and the mass matrix can be written as:
the Chebyshev polynomials of the second kind.
Another improvement can be obtained by approxi- 1 2 2 1 2
. A ) 1, 0 non
mating more eigenvalues. For example, in the next row my=—=+=—+=. mMp=sr+—+,
. - 15721 28 21 14 36
the first three eigenvalues have been approximated by 1 n 2
using a2 Timoshenko-Ritz approach with a single ms =—+-—'§+4—'5, 57
unknown multiplier and the trial function: 28 -1
Table 3
First four non-dimensional frequencies for a cantilever complete wedge beam, as obtained with a variety of approximate SAN
methods
Method , 0, . ' Q, Qs Q.
Rayleigh 1 parameter 7.15864 31.2576
Rayleigh 2 parameters 7.15791 31.1613
Rayleigh 3 parameters 7.15657 ~ 31.0587
Rayleigh 4 parameters 7.15647 31.0462
Rayleigh 2 parameters 7.15791 31.1613
T; polynomials
Rayleigh 3 parameters 7.15653 31.0455
T; polynomials
Rayleigh 4 parameters - ) 7.15647 31.0419
T; polynomials
Rayleigh 2 parameters 7.15791 31.1612
U; polynomials
Rayleigh 3 parameters 7.15655 31.0597
U; polynomials
Rayleigh 4 parameters 7.15647 31.0424
U, polynomials
Timoshenko 1 parameter 7.15646 31.0427 75.7276
Timoshenko 1 parameter 7.15646 31.0415 75.5264 141.1265
Timoshenko 2 parameters 7.15646 31.0413 75.5242 139.9510
Naguleswaran 7.15646 31.0413 75.4866 139.6100
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I l’( 1 24 t%
"=ttt ™EEtntss
_ 1 21, P%
m;;—zs-‘i's—s' 6—6' (58)

The results show a good agreement, even for the third
eigenvalue. A further improvement can be considered
by approximating even the fourth eigenvalue, with the
trial function:

W2) = (@7 + @2 + a2t + aP)(1 +42). (59

The results are given in the next row, and obviously
are quite satisfactory. Finally, a two-parameter version
of the Timoshenko-Ritz method has been used, and
the first four eigenvalues have been calculated, with
the aid of the trial function:

D=(a + @ + ot + a1l + 4z + 672, (60)

The results, as given in the last row, should represent
the best approximation to the true frequencies.

6. Conclusions

In this paper the optimized versions of the Rayleigh
quotient and Timoshenko quotient have been used to
approximate higher frequencies, and some procedures

“to systematically improve the approximations have
been indicated. All the calculations have been per-
formed with the aid of a powerful symbolic language,
and two sample notebooks have been proposed in the
Appendix. Constant references have been made to the
wedge beam, which can be considered as a classical
example.
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