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Abstract—A recently developed discretization method is applied to some classical problems in plate
bending analysis, in order to check the accuracy of the solutions and the rate of convergence for various
discretization levels. Numerical comparisons with available finite element solutions are reported, and it
is shown that the proposed method can be considered competitive with the more recent finite element

techniques.

1. INTRODUCTION

Consider the rectangular plate shown in Fig. 1, with
arbitrary boundary conditions, and subjected to a
general ensemble of transverse forces, F. The plate
thickness, ¢, can vary according to a generic—even
discontinuous—Ilaw, whereas the Young’s modulus,
E, and the Poisson ratio, v, are assumed to be
constant.

The structure can be discretized according to the
finite element method, and countless elements have
been used to this end. A useful review of these
developments was completed by Hrabok and
Hrudey [1]. More recently, nonconforming transition
plate bending elements have been introduced [2], to
refine the mesh of the plate locally, and a high-pre-
cision element having linearly varying thickness was
used to study plates with varying flexural rigidity [3].

In this paper, the cell discretization method—which
was recently extended to two-dimensional structures
[4]—is used to examine the static behaviour of the
plate in Fig. 1. A number of classical boundary
conditions and load conditions are considered, which
were already used to test the convergence properties
of new finite elements.

2. METHOD OF ANALYSIS

The horizontal side length, L, is divided into ¢,
small segments, while the vertical side length, H, is
divided into 7, small segments. Consequently, the
plate is divided into (1, 1;) rectangular panels. Accord-
ing to the cell discretization method, the panels are
considered to be flexurally rigid and torsionally elastic,
with the bending flexibilities being concentrated at the
(t, + 1)(z, + 1) vertices. It is possible to prove that the
vertical displacements of these vertices can be assumed
to be Lagrangian coordinates, so that the structure
is reduced to an n-degree-of-freedom system, where
n = (¢, + 1)(t, + 1). If the Lagrangian coordinates are
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ordered into an n-dimensional array x, then the
equilibrium equations can be written as:

Kx=f, m
where K is the global stiffness matrix, and f is the
array of the nodal forces.

The explicit formulae for the global stiffness matrix
elements are given by Franciosi and Franciosi [4],
together with a detailed analysis of the boundary
conditions. It is only worth noting the peculiar highly
banded structure of the matrix K (Fig. 2), which has
been conveniently used to simplify the Gaussian
solution routine.
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Fig. 1. Rectangular plate.
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Fig. 2. Global stiffness matrix K.

3, NUMERICAL EXAMPLES

3.1. Cantilever plates

As a first example, consider a cantilever plate,
subjected to the following three load conditions:
(a) two downward unit loads applied at the free edge

(Fig. 3a),
(b) a distributed load along the free edge (Fig. 3b),
and
(c) an upward unit force at one corner, and down-
ward unit force at the other corner (Fig. 3c).
The first loading condition was examined in Sec. 2 by
using a number of conforming and nonconforming

-
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Fig. 3. Cantilever plate subjected to (a) two downward
concentred unitary forces, (b) uniformly distributed load
and (c) one downward unit force and one upward unit force.
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Table 1. Results of cantilever plate—loading condition (a)
(Fig. 3a): E=1000, v=0.0, t=0.1, L =9.00, H =3.00

Element d.of. w, w, Moax
NC4 2] 24 1919.07 -593
NC4 2] 180 1940.95 -5.99
NG5 2] 36 1939.77 1935 —5.99
NCs 2] 288 1943.43 -6.00
NC6 [2] 42 1940.45 1934.8 —599
NC6 2] 360 1943.32 -6.00
Beam theory 1944 —6.00

Table 2. Results of cantilever plate—loading condition (b)
(Fig.3aand b): E =1000,v =0.0,¢ =0.1,L =9.0, H = 3.00

Load condition (a) Load condition (b)

Mesh dof. Wy, M, ‘max ‘max
3x3 16 205448 —6.00 20520 —-6.00
9x3 40 195949 —6.00 19560 —6.00

18x6 133 195083 —-6.00 19470 —6.00

27%x9 280 1949.23 —6.00 19453 —6.00

36x12 481 1948.67 —6.00 19453 —6.00

54x18 1045 194827 —6.00 19443 —6.00

Beam theory 1944 -6.00

elements. The best results were achieved with non-
conforming elements obtained by 2 x 2 Gaussian
quadrature. In Table 1 some numerical results are
reproduced from Choi and Park [2], where elements
with four, five and six nodes are denoted by NC4,
NC5 and NC6, respectively. In Table 2 the same
quantities are reported, as obtained by the cell method.

The bending moment is always correctly calculated,
and the greatest displacements for the load condition
(a) are equal at the two corners. Obviously, the load
condition (a) gives nonconstant displacements along
the free edge, and consequently the cell method
converges to a value somewhat higher than the value
predicted by the beam theory. On the other hand,
load condition (b) gives constant displacement along
the free edge, and the method converges to the beam
theory results. Load condition (c) is intended to check
the behaviour of the cells method in the presence
of twisting moment. Even this case was treated by
Choi and Park [2], and again the best performance
was offered by nonconforming five- and six-node
plate bending elements obtained by 2 x 2 Gaussian
quadrature.

In Table 3 the vertical displacements of the forces
are given, for a number of different discretization

Table 3. Results of cantilever plate—loading condition (c)
(Fig. 3c): E=1000, v=03, t=0.1, L =9.00, H=3.00

Mesh d.of. W, w,
NC5[2] 36 —98.99 90.95
NC6[2] 42 —95.56 87.75
[5] 180 -97.07 97.07
Eight-node element [2] 504 —98.76 98.76
3Ix3 16 —101.101  101.101
9x%x3 40 -97.63 97.63
18 x 6 133 -97.16 97.16
27x9 280 —96.988 96.988
36x12 481 —96.91 96.91
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Table 8. Simply supported square plate (Fig. 5a and b)
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Table 9. Clamped square plate (Fig. 6a and b) (v =0.3).

(v =0.3). &, = DWy,, [qL*, B = My /qL?, @y = DW,,. /PL = DWou/qL*, 0= DWy,, [PL?
Load Load Load
Load condition (a) condition (b) condition (a)  condition (b)
Mesh d.of. o B o, Mesh d.of. o, o,
[8] 27  0.003446 0.0013784 {81 27 0.001480 0.005919
[8] 75  0.003939 0.0012327 [8] 75 0.001403 0.006134
[8) 243 0.004033 0.0011829 [8] 243 0.001304 0.005803
[8] 507  0.004050 0.0011715 (8] 507 0.001283 0.005710
[8] 867  0.004056 0.0011671 [8) 867 0.001275 0.005672
91 116  0.004057  0.0495563  0.00113847 4x4 25 0.00180 0.008075
9} 280  0.0040623  0.0479467  0.00115486 10 x 10 121 0.001369 0.00623
9] 516  0.0040623 0.0478986  0.00115776 20 x 20 441 0.001292 0.00580
9 824  0.0040621 0.0478876  0.00115873 30 x 30 961 0.001276 0.005706
2x2 9 000391 00423  ooo1se2  xactl7] 0.00126 0.00560
4x4 25  0.004028 0.0457 0.001367
;g x ;g ‘lt«zti 32% gﬁg% 328}366 It is D = D, along the edge AD, and D = 8D, along
30x30 961 0.0040613 0.047844 0.001168 the edge BC. This example has been studied in [3) and
Exact [7] 0.0040623 0.0478864  0.0011604 [10] by using 18 degrees of freedom triangular plate

The nondimensional central deflection coefficient for
several meshes is reported in Table 8; again, it seems
that the convergence rate of the proposed method is
faster than the finite element convergence rate.

3.3. Clamped square plate

The nondimensional central deflection coefficient
for a clamped square plate subjected to two different
load conditions is reported in Table 9 (Fig. 6a and b).

This case seems to be the most difficult one to be
treated by the cell method. In fact, it is necessary to
use quite a refined mesh, if highly accurate results are
required.

3.4, Square rapered plate

As a final example, consider the square simply
supported plate with variable thickness in Fig. 7. The
plate is subjected to an uniform load ¢, and its
flexural rigidity D varies only in the vertical direction,
according to the law:

D = Dye”

i

Fig. 6. Clamped square plate subjected to (a) uniformly
distributed load and (b) unit force at the centre of the plate.

bending elements.

The numerical comparisons are shown in Table 10,
in which the vertical displacements at six points are
calculated with three different meshes.

4. CONCLUSIONS

A recently proposed discretization method has
been applied to some classical test problem in plate
bending analysis. The results have been compared

Table 10. Deflections/(gL?/10*D,) for the tapered plate in

Fig. 7, v =025
Meshl Mesh2  Mesh3
Point 4x4 8x8 16x16  [2] [10]
1 5.80 5.896 5.915 5.90 5.92
2 7.99 8.151 8.185 8.18 8.20
3 10.05 10.127 10.135 10.11 10.14
4 13.81 13971 13.99 13.97 14.01
S 9.48 9.377 9.33 9.30 9.31
6 12.93 12.82 12.77 12.72 12.75
A
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Fig. 7. Simply supported square plate with varying flexural
rigidity along the y-direction.
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Fig. 4. Cantilever square plate with two clamped edges and
two free edges, subjected to (a) a unit force at the free corner
and (b) uniformly distributed load.

meshes. In this example, the convergence rate of
the cells method compares favourably with the
convergence rate of the finite element method.

As a second example, consider a plate with
two clamped edges and two free edges. Two load
conditions are examined:

(a) a concentrated load P at the free corner (Fig. 4a),
and
(b) an uniformly distributed load ¢ (Fig. 4b).

In the first case, Table 4 shows the greatest displace-
ment and the greatest bending moment, according to
the cell method and to three different finite element
discretizations. It is evident that 176 degrees of
freedom (d.o.f.) were not sufficient to achieve good
accuracy in the finite elements methods. In fact, the
same plate was studied [6] in an ‘exact’ way, by
assuming v = 0; in Table S the greatest displacement
is reported, for various discretization levels, and
convergence to the true result is quite evident.

Table 4. Square plate with two clamped edges and two free
edges—loading condition (a) (Fig. 4a): E = 3600, v =0.3,
L=10,1=04, P=100
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Table 6. Square plate with two clamped edges and two free
" edges—loading condition (b) (Fig. 4b): E = 3600, v =0.3,

t=04,L=10,4=09

Mesh dodf. W s Moy,
2 174 18.864 ~24.60
2] 176 19.066 —24.75
2 176 18.848 —24.60
4x4 25 20.44 —23.24
10 x 10 121 18.94 —2471
20 x 20 441 18.68 —26.25
30 x 30 961 18.64 —26.37

Table 7. Square plate with two
clamped edges and two free edges—
loading condition (b) (Fig. 4b):
E=1000,v=0,L=1,¢t=01,g=1

Mesh

d.of.

W,

4x4 25 0.4743
10 x 10 121 0.44158
20 x 20 441 0.4362
30 x 30 961 0.4351
Exact [6] 0.43404

Mesh d.of. W inax My,
{2 174 141.13 -110.0
[2) 176 143.12 —110.5
[2] 176 140.20 -170.0
4x4 25 142.47 —97.884
10 x 10 121 139.756 —103.516
20 x 20 441 139.18 —112.75
30 x 30 961 139.07 —114.073

Table 5. Square plate. Same data as
Table 4, except that v =0

Mesh d.o.f. Woas
4x4 25 127.79
10 x 10 121 126.053
20 x 20 441 125.64
30 x 30 961 125.55
Exact [6] 125.52

The same plate, subjected to the load condition (b),
was studied by three different finite element methods,
and the numerical comparisons are given in Table 6.
In this case, 176 degrees of freedom were enough to
achieve satisfying results. The same case, for v =0, is
reported in Table 7, and again the convergence rate
was quite rapid.

3.2. Simply supported square plate

This is a classical test problem, which has been
extensively studied by means of different finite
elements, and it was also solved by Timoshenko {7].
Two different load conditions will be considered:

(a) a concentrated force P at the centre of the plate
(Fig. 5a) and
(b) an uniformly distributed load ¢ (Fig. 5b).

Fig. 5. Simply supported square plate subjected to (a)
uniformly distributed load and (b) a unit force at the centre
of the plate.
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with various finite element outputs and—where
available—with exact analytical results.

The convergence rate is shown to be quite rapid,
and usually a coarse mesh will give satisfactory
results. On the other hand, the peculiar banded form
of the global stiffness matrix allows a considerable
time saving, so that the proposed method seems to
be at least as convenient as the most advanced finite
element methods.
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