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A delayed version of the well-known circle map is examined, and a particular interesting scenario is
closely followed. Oscillations of tori can be observed, according to an already explained mechanism, and
a global bifurcation with hysteresis is illustrated, in which a strange attractor is suddenly destroyed by

colliding with a coexisting saddle object.
circle map are also given.

The so-called circle map
0i1=0:+ A sin(276:) -+ D (1)

is one of the most famous applications, because it
naturally arises in the study of many different
fields of physics and engineering.’»” It has been
extensively studied, from the classical study in the
invertibility region A<1/27** until the recent
works that establish some universal scale in both
the region A<1/2x~® and A>1/2x.2'” Quite
recently, other papers have emphasized in the
two-parameter context all the complexity of the
noninvertibility region.'”

On the other hand, the following delayed ver-
sion of the circle map

Gi1=0:+ A sin(2re:) + D,
¢i1=0; (2)

is much less studied. It has some characteristic
features of the circle map: for example, its param-
eter plane (A-D) has a symmetry line D=.5 and
various Arnold horns can be detected in this
plane. :

However, it is well known that in a two-
dimensional map another local bifurcation can be
typically observed, i.e., the Neimark bifurca-
tion,'?'® in which a periodic orbit of period »
loses its stability and gives rise to # stable invar-
iant circle surrounding the unstable #n-periodic
orbit. We shall see that this bifurcation is indeed
present, and it is responsible for a global bifurca-
tion with hysteresis.

In the following we will fix A=.3, while D will
be allowed to increase from .5, but the chosen
route is by no means pathological, and can be
observed, with minor variations, for a wide range

First numerical comparisons in the parameter plane with the

of A values. Increasing D from .5 we first
encounter the biggest Arnold horn, in which a
two-periodic orbit is stable. This orbit is born
through saddle-node bifurcation at D=.566 and
remains stable till D=.606, where it is destroyed
through another saddle-node bifurcation. The
resulting intermittency phenomenon can be observ-
ed on both the sides of the horn. The 3-periodic
horn extends from D=.75 to D=.763, and a
periodic orbit of period six can be observed in the
range .74< D<.742, according to the general the-
ory of Arnold horns.”” When D is increased
past .742, the attractor becomes a torus that
oscillates more and more strongly near the
“future” 3-periodic orbit. (Fig. 1) These oscilla-
tions closely follow the unstable manifold of this
orbit, as explained by Kaneko.'"

If the parameter is further increased, the
attractor becomes strange and passes through
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Fig. 1. Oscillations of the attractor near the 3-per-
iodic Arnold horn.



July 1986

HYSTERESIS INTERMITTENCY NOT GENERIC

Fig. 2. Generic global bifurcations under a single
control.

various other frequency lockings regions. Then
for D=.82 it is suddenly replaced by a torus.
This torus is located outside the portion of space
previously occupied by the strange attractor, so
we can say that a blue sky catastrophe has occur-
red. '

In fact, it is known'® that the only two generic
global bifurcations that can be observed under the
influence of a single parameter are intermittency,
or interior crisis, and blue sky catastrophe, or
boundary crisis. Both these phenomena are
related to collision with saddle-type objects, but
they are two totally different bifurcations, whose
main characteristic .can be summarized as in
Fig. 2. As we can see, intermittency implies the
passage from an attractor A to an attractor B
which must be located inside A, or must inglobe
A. On the other hand, the attractor B which is
created by a blue sky catastrophe must be totally
disjont from the attractor A. More than that, in
this disjont case, the attractor B is not created at
the moment of the bifurcation, but it must have
already existed.'® In our case, the strange
attractor collides with a saddle object, and then it
is replaced by the already existing stable torus.
This bifurcation is usually associated with hyster-
esis, and indeed, if we let D decrease from D= .82
we observe that the torus shrinks and becomes a
point attractor, through inverse Neimark bifurca-
tion. This equilibrium point is destroyed at D
=.7 (Fig. 3). If we now follow the upper path for
increasing D values, we observe that the strange
attractor and the saddle move and collide at the
value D=.82. After that, the system jumps
again to the torus attractor. We note that the
saddle must lie between the stable torus and the
strange attractor (Fig. 4), but it is useless to
accurately detect its location, because the above
qualitative arguments allow us to conclude that a
blue sky catastrophe has occurred at a D value
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Fig.3. Schematic diagram of the hysteresis associat-
ed to blue sky catastrophe.

Fig. 4. Coexistence of torus and strange attractor
for A=.3 and D=.82.

near to .82.

In this letter we have sketched some results
about the behaviour of a delayed version of the
circle map, emphasizing some global dynamical
aspects that are not present in the circle map, and
that are by no means pathological. Oscillations
of torus near the 3-periodic frequency locking
were illustrated, and a blue sky catastrophe was
detected, with the resulting hysteresis.

The author wishes to express his gratitude to
both the referees for the valuable improvements
which they suggested.
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