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Introdyction

The differential quadrature method {henceforth DQM) is a general purpose ap-
proach to upproxiinate and numerically solve boundary and initial value problems.
Quite recently, the method has been applied to a large number of structural sys-
tems, as beams, arches, plates and shells, and its scope has been greatly expanded.
The main disadvantage of DQM seems to be the application of the boundary
conditions in fourth—order equations, where more than one condition must be
imposed ac the same point. A considerable improvement with respect to the
approximate S—approach has been recently proposed by Chen et al. [1997).

In this paper, a simple device is proposed, whicli allows us to treal geomietric and
natural boundary conditions in an unified coutext. The procedure is applied to
stability and dynamic analysis of beams, and the convergence rate of the resulis
seems to be quite satisfactory.

The extended weighti ie

Let us consider a heam with span L, Young modulus £, second moment of arca
I, mass density p and cross sectional area A and let us define a curtesian roference
coordinate x. Tt is convenient to adopt a natural coordinate system &, defined in
the natural interval |1, 1}, by nieans of the transformaion rule:
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sta) =2(F) -1 1)

The natura) interval is divided into n segments defined ix: means of 11 + 1 points
located at the abscissae £, €7, .. - Sney.
$We shall assume the following set of (1 + 7) nodal urkn:nvns:

T ’ " " ! "o " f
d ={u;, U, U, Uy Uy, e Ungdy Upyye Uyyy, un+l} (‘Z)

i.e. the displacements at each nodal points, plus the first three derivatives at the
end points,
Cousequently, Lhe displacement v(€) of the beam can be approximed by:

n+7

v(g) =aC =Y al, (3)

i=]

where or is a row vector of munomials, and C is a colurin vector of Lagrangian
coordinates.

Two choices of the @& vector arise quite naturally:

1. the first elements of a power series:

a=(1 § & . & (4)

2. the first elements of the Chebyshev polynomials of the first king:

a={To(f) Ti{&) TofS) --- T.ell)) (5)

In the first case the nodal paints will be simply located ai equally spaced coordi- -
natos:

i—-1)—n
&:.-.-._(-.__.r.t..)._.._-:

whereas in the Chebyshev case it is convenient to use the: so called Gauss-1.obatto-
Chebyshev points:

1=1,2,...,n+l (6)

Cd:_m,_(ﬂt—l)); i=1,2 ... 0] (7)

n
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Prom Eqn.(3) it is easily seen that:

v'{{) = a’'C
v'(§) =a"C (8)
v"’(‘s) — aJIIC

and therefore Eqn.(3) and Eqn.(8) can be cvaluated ot the nodal points. It will
be:

4 al \
@)
"
a,

d=¢{ af L == NoC ©))
a

n
L an+l 4

Following the same approach as in Chen et al. [1997] we define the weighting
coefficients of the first four derivatives, as follows:

A=NyNg'; B=AA; C:=AAA; D= AAAA (10)

Frequency analysis

The dynamic analysis of an elastic slender beam can be summarized by the fol-
lowing eigenvalue problem:

v™(z) = QPe(z) (11)

where §? is the nondimensional free vibration frequency of the system:

_ JeALE

2 ol

(12)

and w; are the free vibration frequencies.
The discretized vetsion of Eqn.(11) is given by:
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Dy, Dy2 .. Diais - \ f
L)u_) Dg;z . 1')2_".4.7 '(/';‘ ‘U\:
o :
Dag Da"z oo Dis.s (B 02 vy 13)
; I = i
[.)4.] D4.2 oo 1)4‘711,7 lx M vl ( ’
i gttt
Dn—l-'a"l D-,H, 7.2 .- Dn+7,n +7 Tyl il

As an example, let us now consider a cantilever beari. for which the boundary
conditions are given by:
(-1 =t (~11=¢"(1)=2"(1)-- 0 (14)

or, in discretized form:

I S N T
V=) = Uy T Uy w0 (15)

It is now convenient to interchange the last two rows a-id the last two columns of
the matrix D with the third and fourth rows and the third and fourth columns,
so that the boundary conditions can be immediately iniposed:

(2 0 0 0o 0\[’"{\ r(u\
o 1 0 0 0 0 it 0
,L,II 0
D 0 1 0 0 0 vt
vl 210 ¢
0 0o o 1 0 0 na =02 0| ()
Dsya D5z Dsyse Dsuar | Dss ... Dsa v v2
\De¢s Ds2 Damss Dantr | Das ... Do/ \ .u;‘u J \ 2} /

As can be seen, it i8 not necessary to perform any condensation, because it is
sufficient to solve the reduced eigenvalue problem:

Day Dsg ... Dsa Dsgy v v2
Dosn Dgs - Des Dsg s v3

S Py=0f) (17)
s D3g ... D3z Dsy vy ¥y

,IJH "
Dys Dug .. Ds3 Dag vy W'
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Actually, the row and column interchanges have been used only for the sake of
clarity, but it is easy to realize that a more effective computational code can be
based on row and column substitutions. A

In order to check the numerical performance of the method, & sisnple Mathematica
code was written, and in tables 1-2 the first six free vibration frequencies of the
cantilever beam have been given, together with the exact results. "

Q, Q2 {23
n=4 Uniform grid 3.51601296 | 22.0404841 | 61.6227869
n=4 Chebyshev_gx:id 3.51602018 | 22.0124366 | 67.9852392
n=5 Uniform grid 3.51601534 : 22.0338612 | 61.7987166
n=5 Chebyshev grid | 3.51601529 | 22.0301356 | 61.4356717
n=6 Uniform grid 3.51601527 | 22.0345233 | 61.69024990
n=6 Chehyshev grid 3.51601527 | 22.0344419 | 61.8547408
n=7 Uniform grid 3.51601527 | 22.0345029 | 61.6972528
n=7 Chebyshev grid 3.51601527 | 22.0345039 | 61.6971933
n=10 Uniform grid 3.51601527 l 220344916 | 61.6971958
n=10 Cheoyshev grid | 3.51601525 | 22.0344916 | 61.6972192
n=14 Uniform grid 3.51601527 @ 22.0344916 | 61.6972144
n=14 Chebyshev grid | 3.51601471 | 22.0344918 | 61.6972144
Exact 3.51601527 | 22.0344916 | 61.8072144

TABLE 1: First three free vibration frequencies of a cantilever beam

As can be seen, the convergence rate is quite satisfactory, and the uniform grid
behaves better than the Chebyshev grid, expecially for the higher frequencies.
Moreover. we had no difficulties in obtaining the sigenvalucs, whereas Bert and
Malik {1996] reported some cases in which their convergence procedure failed.
From this point of view, Mathematica allowed‘ us to minimize the round—off errors,
by introducing the numerical approximations only in the eigenvalue calculations.
Finally, our convergence rate seems to be faster than the convergence rate given
in the paper by Bert and Malik {1996, pag.12].

Stability snelysi

Let us consider now the stability analysis in the presence of an axial compressive
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v(=1) = v'{~1) = v(1) == v"(1) = 0 (21)

or, in discretized form:

V=V =gy =V, 0 (22

The third and fourth rows and columns must be interchanged with rows and
columns (n+4) and (n+6), and subsequently the boundsary conditions can be im-
posed immediately, leading to the reduced generalized eigenvalue problem:

[/ Dsg Drg ... Dsa DSJH-T\
Dg s Dgg ... Desa Dg nyr

Day Dsg ... Dsa D3 a1
Dn+s.s Dn+5,6 Dn+5.3 Dn+5.-t

{ Dys Dyg ... Dis  Dgner
L \Dynirs Dnire ... Dnsra Dn+7.n1-'l/ )
/ Bss Bseg ... Bsa Bs,ny v \7 [ v2 \ 0\
Be,s Bgg ... Bss Bgny - U3 0
Al Bss Bzg ... Bsa Bypyr }":' =10
Bniss Bryss .- Bpnss  Buysa Unt1 0
Bas Bag ... Bsa Byt ) "’il ) \0 }
Bn+1s Brite -« Baprd Baoragr/ \ Vi1 0

In table 3 the nondimensional critical load is reported, together with the results
given by Chen et al. [1997]. The present approach seems to be more precise,
even if some care must be taken in order to perforin the comnparisons between the
present method (n segments, n -+ 7 Lagrangian coordinates) and the Chen et al.
procedure (n segments, n + 4 Lagrangian coordinates).

Conclusions

A modified differential quadrature method has been applied to stability and dy-
namic analysis of beams. The main advantage of the proposed approach seems to



