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NEW INTERPOLATION FUNCTIONS IN EIGEN-FREQUENCY
ANALYSIS OF TIMOSHENKO BEAMS ON TWO-PARAMETER
ELASTIC SOIL

M.C. BRUNO, V.DI CAPUA and C. FRANCIOSI (BASILICATA)

The aim of the paper is to study the dynamic behaviour, limited to the eigen-value
problem, of Timoshenko beams on variable two-parameter elastic soil. The analysis is
performed by means of two different finite elements, with cubic and quintic interpolation
laws, the mass and stiffness matrices are analytically calculated, and their performances are
briefly discussed. Some numerical examples end the paper, in which the good convergence
rate of the elements is shown, and a comparison is made with a powerful Rayleigh-Ritz
approximation.

1. INTRODUCTION

The simplest structural model of a foundation beam is given by an Eu-
ler - Bernoulli slender beam resting on a Winkler elastic soil. The classical
HETENYI results for the static analysis [1] refer to this model, and endless
finite elements have been proposed, in order to study stability and dynamic
behaviours of the beam. For example, the exact analyses given in [2, 3] must
be noted, together with an attempt to analyze beams on variable Winkler
soil [4].

Nevertheless, this simple model has been questioned in two respects.

Firstly, it is well-known that the Euler - Bernoulli hypothesis can be ac-
cepted only for slender beams, in which the shear deformations can be ne-
glected, and usually a foundation beam is rather stocky. Moreover, the higher
vibration modes are always affected by significant shear effects.

A substantial improvement can be obtained, if the so-called Timoshenko
theory is employed, in which the shear energy is taken into account in a
simplified model, by introducing a corrective factor. The strain energy of
the beam is therefore written as:

(1.1) S=58+5, =

N =
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0 0
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where L is the span of the beam, E is the Young modulus, I is the second
moment of area of the beam cross-section, v(z,t) is the vertical displacement,
G is the shear modulus, A is the cross-sectional area, x is the corrective
shear factor, and 1 is the additional shear angle. Finally, the primes denote
derivatives with respect to the abscissa z.

If the Timoshenko beam theory is adopted, then the beam is supposed
to be stocky, and therefore it is necessary to consider even the effects of the
rotatory inertia of the cross-section. The kinetic energy is therefore given
by:

L
.2
1.2 T=T,+T, == [ pAt’dz + 1 ol ¢ dz,
2
1]

N =
Q\.h

where p is the mass density, ¢ = v’ + 9 is the section rotation and the dot
denotes derivatives with respect to time ¢.

Despite its great simplicity, even the Winkler soil model has been sub-
Jjected to severe criticisms, a least in the presence of concentrated loads and
flexible soil. Moreover, the Winkler soil model becomes unrealistic if higher
vibration modes must be calculated.

A more accurate soil model goes back to Vlasov, where the soil is regarded
as an elastic medium defined by the Young modulus E, and the Poisson ratio
v,. By means of simplifying hypotheses, the strain energy of the soil can be
written as:

1 f 1 f
(1.3) Su=3 / kot + 3 / ky$?dz,
0 1]

where the soil parameters k,, and k, can be expressed as functions of E, and
v,. More precisely, let us suppose that the Young modulus increases linearly
from E; at the soil level to E, at the depth H:

(14) Ez) = By (1 - %) +BE

Then it will be [5]:

_ B(1 - v,)
T 8H(14v,)(1 - 2v,)
Ey(2ysinh 27 + 492) + (E2 — E;)(cosh2y ~ 1 + 292)
X sinh? y ’

1.5) ko
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_ BH
T 3272(1 4 v,)
o E;(27sinh 2y + 492%) + (E2 — E;)(cosh2y — 1 4 292)
sinh? y ’

(16) Kk,

where B is the foundation width and « is a parameter which can define the
soil behaviour. It is worth noting that « is influenced by the loading, so that
its evaluation in dynamic analyses can be difficult.

2. THE FINITE ELEMENTS

The simplest finite element which can be used is the bilinear element,
where both v(z) and ¢(z) are assumed to vary along the element according
to a linear law:

(2.1) v(z) = Ag + Azz, #(z) = Az + Az=.

Unfortunately, it is known that this element is subjected to severe locking
phenomena [6], and it must be modified using, for example, the Prathap field
consistency theory.

Better results are obtained by employing quadratic Mindlin elements or
the so-called TIMY finite elements [7].

In this paper we use two higher order elements, in which v(2) and ¢(2)
are allowed to vary according to the cubic law [8-9]:

(2:2) v(z) = Ao+ A1z + Axz? + A328, #(2) = Ag+ Asz+ Ag2? + A723,
or with quintic law [10]:

v(z) = Ao+ A1z + Az2® + As?® + Ayt + A5,

2.3
( ) ¢(Z) = Ag+ A7z + A322 + A9z3 + A1024 + A1125.

In both the cases, the elements have two nodes, the degrees of freedom
are given by:

- (2’4) dT = (vl7via¢l)¢,1’v2,”£,¢2,¢,2)
for the cubic element, and:
(25) dT = ("l’ ’U{, v{,’ ¢1’ ¢,1, ;’9 v2, v£7 ‘Ug, ¢2’ ¢,27 ¢I2I

for the quintic element.
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The corresponding shape functions N;(z) are the usual Hermitian poly-
nomials of degree 3 or 5, respectively, so that it is possible to write:

(2.6) v= (;) = Nd.

If this relationship is introduced into Egs. (1.1)—(1.3), then after some
algebra we can define the stiffness matrix of the structure:

L
2.7) k= / BTEB dz,
0
the stiffness matrix of the soil:
L
(2.8) k, = / NTWN dz,
0
and the mass matrix:
L
(2.9) m= / NT#N dz,
o

where B is the deformation matriz, which can be obtained from the shape
functions by means of differentiations, and the three diagonal matrices E,
W and m are given by:

EI 0 k, 0 A 0
2.10 E= , W= h = .
(2.10) (o G’An) (o k,,)’ " (o gI)
It is immediately seen that, if all the parameters are constant, then the
stiffness matrix of the soil can be obtained from the mass matrix by identify-
ing k,, with pA and k, with oI. However, in the following, the soil parameters

will be supposed to vary along the element according to a linear law, so that
it will be:

211)  Kul2) = kurt (ur = Rat) s kl(2) = ki + (ke = k) T

where ky, kwr, kpi and k,, are the soil parameters at the left- and at the
right-hand end, respectively.

In this case, of course, the soil stiffness matrix is no more deducible from
the mass matrix, and is given in the Appendix both for the cubic and the
quintic element, together with the stiffness matrix for the quintic element.
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The mass matrices can be immediately recovered by putting ky,; = ky,r =
oA and ky = kyr = ol

The usual assembly procedure gives the global stiffness matrix K and
global mass matrix M, and the following eigenvalue problem:

(2.12) [-w™™M +K]D =0

must be solved, in order to deduce the free vibration frequencies w? and the
corresponding vibration modes.

3. NUMERICAL RESULTS

Let us consider a simply supported beam defined by E/G = 13/5,
I/AL? = 0.04 and x = 0.85. Moreover, let us assume that the beam is
resting on a linearly varying two-parametric elastic soil, where the soil coef-
ficients are supposed to vary according to the following triangular laws:

EI 2 EI 2z

(3.1) ko=KopzT> ko= K,mt—Z.

Table 1. First three nondimensional frequencies for different finite element
discretization levels. )

N, elem 1 2 3 4 5 10

o 3.73225 3.67114 | 3.66915 | 3.66892 | 3.66888 | 3.66886
Bicubic | 2; 6.72073 6.24137 | 6.15496 | 6.14929 | 6.14800 | 6.14738
£2; | 19.0036 9.00990 | 8.64982 | 8.57983 | 8.57168 | 8.56749

(o) 3.66895 3.66886 | 3.66886 | 3.66886 | 3.66886 | 3.66886
Biquintic | £2; 6.15747 6.14766 | 6.14737 | 6.14736 | 6.14736 | 6.14736
23 9.27202 8.57087 | 8.56778 | 8.56738 | 8.56736 | 8.56736

In Table 1 the first three nondimensional frequencies:

/4
_ [eAL*? !
(3.2) 0= (__—EI

are given, with K,, = 100 and K, = 1, for increasing number of finite
elements, and both for the bicubic and the biquintic element.

It is immediately seen that the convergence rate is quite good, even for
the higher eigenvalues, expecially for the biquintic element.
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In order to perform a comparison, a Rayleigh- Ritz approach has been
employed, by approximating deflection and slope with the following formu-
lae:

v(z) = 4 sin =2 7 + Az sm + Agzsin 322 y
(3.3) 3z
(z)—A4cos—+A5cos L +A6 cos .

If the soil parameters variation law (3.1) is again adopted, then the re-
sulting stiffness matrix is given by:

n? K, EI -16K,EI
b= oA S Ra S
ki3 =0, k1,4 = —GAkn, k15 =0, k16 =0,
4x? K,EI —-48K ., ET
kap= oAt S B = e
k2,4 = 0, k2'5 = —21I'GAK, kz,e = 0,
2,2 K. EI
k3'3 = 18L7°x G;L';-'- WE , k3,4 = 0, k315 = 0, ka’e = —37I'GAK,
x?EI K, x®EI -20K,ET
k4'4 = GAKL + 7 + p2L , k4'5 = _Q-LE—_ , k4,6 =0,
Ar?EI  K,mEI ~52K,EI
kss = GAKL + 7 + TR kse = 5L
k 2GAKL? + 18x2EI + K,n2ET
6,6 =

2L

and the mass matrix turns out to be diagonal, with non-zero coefficients
given by:

my,1 = M2 =M33 = AL
(3.4) ’
my4 = mss = mee = oI L.

In Table 2 the first three non-dimensional free frequencies are given, for
the same beam as in Table 1, and for different values of K,, and K,. The
first row of each entry refers to the finite element results, as obtained with 15
biquintic elements, whereas the second row gives the Rayleigh - Ritz upper
bounds.

The agreement seems to be quite good, even for the higher frequencies,
at least if the soil is not too strong.
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Table 2. First three nondimensional frequencies for different values of the
soil parameters, as obtained with the quintic finite element (top rows) and
with the Rayleigh—Ritz approach (bottom rows).

Ky | 2i | Ku=10 | K, =100 w = 1000 w = 10°
o, | 329416 | 3.56452 4.89832 18.95608

1] 3.20476 | 3.56500 4.89856 19.13355

o5 | o, | 602837 | 6.07732 6.525300 | 19.18400
’ 2| 6.02837 | 6.07732 6.525330 | 19.58606
o, | 850945 | 8.52649 8.692984 | 19.79611

* | 850962 | 8.52676 8.695600 | 20.42891

o, | 342665 | 3.66886 4.93374 18.99947

1| 3.42870 | 3.67053 4.93450 19.17865

L | o, | 609993 | 6.14736 6.58279 19.24783
*1 6.09994 | 6.14738 6.58285 19.63256

o, | 335051 | 8.56736 8.73208 19.84655

%] 8.55114 | 8.56816 8.73587 20.47982

o, | 372589 | 3.91585 5.02867 19.09623

Y| 873494 | 3.92367 5.03249 19.29801

25 | o, | 629034 | 6.33396 6.73733 19.45441
) 2| 6.29041 | 6.33403 6.73751 19.78788
o, | 866565 | 8.68199 8.84179 20.00055

*'| 8.66910 | 8.68578 8.85020 20.63504

o, | 445122 | 456118 5.35261 19.38464

11 450784 | 4.61406 5.38666 19.70479

10 | o, | 691599 | 6.94906 7.26129 20.31278
2| 6.91791 | 6.95102 7.26388 20.54292

o, | 910658 | 9.12100 9.26255 20.83346

* 1 9.13866 | 9.15389 9.30414 21.44102

4. CONCLUSION

The dynamic analysis of a Timoshenko beam resting on a variable two-
parameter elastic soil has been performed, by using two finite elements with
cubic and quintic interpolation law, respectively. The numerical examples
show a high precision even if a small number of elements are used.
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APPENDIX

The soil stiffness matrix of the cubic finite elements can be written as:

10ky; + 3kyr )L 15kt + Tkyy ) L2
ki = ( wl = wr) , kg = ( wl 30 wr) , ki3 = 0,
— _ g(kwl + kwr)L _ ""(7kw[ + 6kwr)L2
k=0, k5= 140 y  kie= 220 )
5kt + 3kyr) L3
k=0, kig=0, kpn= L—ls_m—l— ’
_ _ _ (6kwi + Thwr)L?
ka3 =0, k2q=0, ks = 120 )
—(kwi + kur)L?
kog = _(_*"‘_280£)_ , ka7 =0, kos = 0,
10ky; + 3kpr )L 15k, + Tk, )L?
kw:%, k34=————————( pl420p) ,  kas=0,
9(kpt + kpr )L —(Tky + 6k, )L?
kas:o, k37=%’ k38: ( Pl420 P) ,
5kpy + 3ky, ) L3
kgg = (”Iwﬂi—_, ke =0, ks = 0,
kay = (6kpt + Thpr)L? kag = —(kpt + kpr) L
= 420 ’ 8 280 ’
fee = BRu 10k, )L ben — ~(Tkwi + 15k, ) L2
55 = 35 ’ 56 — 420 '
3kyi + 5kyy ) L3
k57 = 0, k58 = 0, k66 = % ,
k67=0, k68=0, k77=(_3£7i%0kpr)1;,
_ —(Tkpi + 15k, ) L? _ (8kpi + 5kpr )L
brs = 420 » ke = 840
The stiffness matrix of the quintic element is given by:
o 10G Ax _ 3GAk P GAKL
1,1 — 7L y 1,2 = 14 ’ 13— 84 ’
- —-GAk kr = -11GAkL koo = —GAKL?
4= 5 8= g1 16= "oz »

ki = —k1g, kig=ki2, kig=—-ki3, k110 = k14,
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8GAKL
ki = ks, k112 = k1, ko2 = ,
35
GAKL?
k23 = a0’ k24 =k, kos =0,
-GAxL? —GAkL
= — k = - =
ka6 1008 " 2,7 k1,2, kas 0
GAKL? 13GAKL?
k2o = %10’ k210=Fk1s5, ka1 = 20
-13GAxL? GAKL3
k212 = <00’ 33 = —ean ksqa=—kie, kas=—ks,
GAKIL?
kzg = 0, k3z= k13, ksg = —kz9, k3o = 260’
-GAKLA
k310 = k16, k31 = —kz12, kaiz = 5040
h . _ WEI 181GAxL  _3EI 3UGAxI?
W= TTL 462 457 T4 4620 '
EIL 281GAkL3
ke = o + —%saa0 ka7 = k14, ksg = k15,
—10EI 25GAKL
kso = —k16, k10 = L + 231
k _ 3ET _ 151G AKL? k _ —EIL 181GAkL®
411 = Ty 4620 ° 412 Ty 55440 '
. _ SEIL  52GAxL® _ EIL* | 23GAxL!
55 = 735 3465 ' 56~ 760 18480 °
ks7 = —k2,10, ksg = —k211, kso = —k212, ksi0 = —ka11,
o _ ~(EIL) 19GAL® _ EIL* | 13GAxLA
S11= " 1980 ’ 5127 7910 T 13860
EIL® GAkL®
= ken = — keg = —
ke 630 9240’ 6,7 k310, 6,8 k3a,
keg = —k312, ke10 = ka2, ke11 = —ks12,
EIL® GAkL®
ke12 = 1260 T Tioss krr=Fk11,
kzs = —k1,2, krog=Fki3, k710 = k1,4, kz1n =k,
k712 = —k1, ks = ka2, kso = —k23, kg10 = k24,

ksa1 = k25,  kspz=kae,  koo=ksz,  keso=—kaa,
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ko1 = kas, ko2 = kag, k10,10 = k44, k10,11 = —kags,
k10,12 = kag, ki1 =ksgs, k1112 = ~ksg, k12,12 = ke 6.

Finally, the soil stiffness matrix for the quintic element is given by:

p o 40k +alk)L (644k.; + 289k, ) L2
1= 462 ’ 12 = 13860 ’
182k, + 99wy ) L3
ki3 = ( w'55440 r) , kia=kis=kie=0,
g o = 2(kut + kur)L b —((230ky + 214k, )L?)
L= 462 ' 18= 13860 ’
99k 1 + 82k ) L3
kg = ( ’55440 r) ) kijo=kia1=k12=0,
ko s = (133K + 75kwr) L3 ko = (14kwi + 9kyy ) L*
2z = 13860 ’ 33 18480 ’
214k, + 230k, ) L2
koy =kos=keg=0, ka7 = ( 113860 v) )
Eo e = —19(kwt + kw,-)Ls Foo = 27k + 2-5’6:.,,,,-)1;4
28 3960 ’ 29 55440 ’
Tkt + 5kwr) L5
k210 = k211 = k2,12 =0, kaa = (Tt + Skur) L7 WI110880’) ,
L (82wt + 99kur) L3
k3gs = kzs=k3se=0, k37 = 55440 R

—((25kwi + 2Tkwr)L*) _ (Fuwt + kur)L®

kas = 55440 S

140k, + 41k,,)L

ksjo = k31 = k32 =0, kya= (140, ) ,

462
kes = (644, + 289k, ) L? b = (182ky; + 99k, ) L3
. 13860 ’ ’ 55440 ’
_ _ _ _ 25(’6,1 + kp,-)L
ka7 = kag=kso=0, kg0 = 160 )

. —((239K,; + 214k,,)L2) b (99K + 82k, ) L2
411 = 13860 ’ 412 = 55440 ’
b (133kn + 75kp ) L3 o - (14 + 9k )L

58 = 13860 ' 58 = 18480 ’
(214ky; + 239k, ) L2

ks7=ksg=kso=0, _ ksio= 13860 )
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ks 1y = —19(kp + k,,,.)Ls , ks.13 = (27kp + 25k, ) L4
! 3960 ' 55440 ?
5
kes = % ) key7 = keg = 0, kego = 0,
ks 10 = (82kp + 99k,,,-)L3 : ko1 = —((25kp + 27kp,-)L4) ’
’ 55440 ' 55440
koxz = (kpt + Ky ) L® ’ krp = (41ky; + 140k, )L ,
! 22176 ! 462
by o (OB + 604k)IT) (00K + 1820, 10
' 13860 ’ ! 55440 ’
3
k710 =0, k711 = k712 =0, ksg = (75wt E;Zﬁkw)L ,
4
kso = -((9kw11;418¢(1)kw,.)L ) sy kso=ks11=ks12=0,
5
koo = %L— » koo =keu1 = key2 =0,
K010 = (41kp; + 140k,, )L , k1011 = —((289/6,‘,,1 + 644’6,,,-)112) ,
! 462 ' 13860
kio12 = (99, + 182kpr)L3 ’ PR (75k,,1 + 133kp,-)L3 ’
! 55440 ' 13860
kiiag = —((9kp + 14k, ) LY) k= (8kpt + Thkpr)LS
' 18480 ! 110880
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