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Abstract—A procedure is proposed for the calculation of the equilibrium paths of a masonry arch
with elastic abutments. The elasticity of the abutments implies the existence of a non-linear, non-
trivial equilibrium path, with the development of three hinges from the beginning of the load history.
The shape of the equilibrium path suggests that shallow masonry arches should be classified in three
different ways according to the nature of their failure load. In the first class a fourth hinge can develop
as the live load is increased, and a classical failure load is reached when a four-hinge mechanism
occurs. In the second case the equilibrium path shows a limit point, and finally it is possible to have a
monotonically increasing equilibrium path, with no limit point or bifurcation point. If the arch is very
shallow, only these two latter possibilities must be examined, and the presence of non-rigid abutments
can cause instability of the arch. This instability phenomenon could be particularly important for
flying buttresses of cathedrals, if they were built along rivers, or more generally on elastic soil.

a span
a; length of the link AH
a, length of the link HK
b rise

NOTATION

cy»cp  elastic flexibilities of the abutments

n number of voussoirs

vertical displacement of the generic point i
horizontal displacement of the generic point i

wy, wy  horizontal displacements of the abutments

Yc» 2c  co-ordinates of the centre of rotation for the first link

A index of the left hinge

B index of the righthand section

H index of the central hinge

H,, Hy horizontal total forces at the abutments

index of the righthand hinge
Va» Vy» Vi vertical reactions

horizontal forces at the abutments due to the dead load

By, B, angles between the links and the vertical line
6 lagrangian co-ordinate, corresponding to total displacement of the abutments
&* & value corresponding to alignment of the hinges
¢y, ¢, rotations of the links AH and HK
$%, 3 non-trivial ¢, and ¢, values for 6 =0

1. INTRODUCTION

In this paper the behaviour of a shallow masonry arch, subjected to the three Heyman
hypotheses [ 1] is examined: sliding failure cannot occur; masonry has no tensile strength; and
masonry has an infinite compressive strength. If the abutments are supposed to be rigid, then
the arch behaviour resembles the behaviour of a rigid—plastic system: an increase of live loads
causes no displacement up to a threshold value, where four hinges occur at the same moment.
If no pattern of hinges can be obtained to lead to a four-bar chain, then the arch must be
assumed ‘perfect’, and a failure load does not exist.

The aim of the present paper is to examine the behaviour of this kind of arch when the
abutments are not perfectly rigid. This assumption changes qualitatively the arch behaviour,
no matter how small the abutment displacement and the trivial equilibrium path is replaced

by a non-linear equilibrium path.
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464 CLAUDIO FRANCIOSI

The existence of non-zero displacements at the abutments implies the development of three
hinges from the very beginning of the load history. It will be seen that there are two
fundamentally different responses of this three-hinged arch. If the arch is not perfect, then as
the live load is increased the hinges move and finally a fourth hinge can develop. In this way
the Heyman multiplier can be obtained for the deflected structure, and usually a lower failure
load than the classical one is obtained. If, on the contrary, the structure cannot fail according
to Heyman, then the development of the fourth hinge is not observed, but usually the
equilibrium path exhibits a limit point, with all associated snap-through phenomenon. It is
obvious that in this case the limit load is the failure load. In other cases it can happen that the
equilibrium path is an ever-increasing path that has no limit point or bifurcation point. The
adjective ‘perfect’ will be used for this type of structure.

2. GEOMETRIC DESCRIPTION OF THE STRUCTURE

The arch is shown in Fig. 1, where the number of voussoirs is, say, n. In order to
characterize the arch geometrically, the following information is needed:

(a) z and y values of the centre point of each assemblage section between two adjacent
VOUSSOIrs;

(b) zand y values of the centre point of the middle section of each voussoir along the co-
ordinate axes;

(c) the values of n vertical and n horizontal forces that are supposed to act at the centre of
each voussoir;

(d) the height of each assemblage section;

(¢) the two flexibilities ¢, and c, of the abutments.

There are no restrictive assumptions about the shape of the centre line of the arch, or about
the loading system. Other important quantities, as for example span or rise, can be easily
deduced from these data, as indicated in Fig. 1.

The simplest relationship between abutment displacement and reactive horizontal force is
assumed

c,H,=w,

cgHy = wy, ) Y

(®)

FI1G . 1. (a) Three-hinged arch model, with elastic flexibility to the left. (b) Deflected structure in
presence of a fixed displacement 4.
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where w, and wy are the horizontal displacements of the abutments, and H, and H, are the
reactive horizontal forces.

Suppose for the time being that the right abutment remains fixed, while the left abutment
moves by the amount é = w, +wj. It is assumed, with no loss of generality, that the
horizontal forces act from left to right, so that one of the hinges can be placed at the first
section A. If it is assumed that the other two hinges develop at the generic sections H and K,
then the arch can be considered as two rigid links AH and HK which connect the hinges.

The rotations ¢, and ¢, of these links must be expressed as a function of the assigned 6, if
the arch has only one degree of freedom. A glance at Fig. 1(b) shows that it is possible to write

a, cos (B — ¢1)+ a, cos (B2 — ¢3) = a, cos f; +a; cos B,
a, sin(B; — )+ a, sin (B, —¢,) = a, sin f; +a, sin f;. (2

This system can be solved numerically to obtain the unknowns ¢, and ¢,. The resulting
graphs ¢, (6)and ¢, (6) are sketched in Fig. 2. The computation is made easier by the previous
knowledge of the values 6*, ¢ and ¢9. 6* corresponds to aligned hinges, and can be easily
obtained as (Fig. 3)

0* = (a, + ay)cos f—a, 3)
where
b
= arcsin . 4
p = arsin ) @
P4
B -
% !
4 Ky
5 »
0 i
9, !

—
-

FiG. 2. Graphs ¢, (8) and ¢,(9).

FI1G. 3. Two extreme possibilities: the displacement & corresponds to aligned hinges, the angles ¢
and ¢3 correspond to ‘inverted’ structure at § = 0.
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The non-trivial values ¢ and ¢3 corresponding to 6 = 0 are shown in the same figure, and
are calculated from the formulae:

(s—d)(s—a)
s(s—ay)

—d)(s—a)
s(s—ay)

i= SR ©

S§= ‘é’(d +a, + az). (7)

¢ =4atn
)
¢9=4an

3

where

and

Hence the system has one degree of freedom, i.e. the total displacement J of the abutments.
Once a d value has been assigned, the rotations ¢, and ¢, of both the links AH and HK can
be obtained, and then the vertical and horizontal displacements of every point of the arch can
be calculated.
The hinge K remains fixed, and it is the centre of rotation for all the points of the link HK.
Hence a generic point i, rigidly connected to this link, will have the following vertical and
horizontal displacements [Fig. 4(b)]

v; = d (sina—sin (x + ¢,))

®)
w;, =d(cosa —cos (o + ¢>)),
where
o= arctgu ©
k%
and
d= \/(YK—Yi)2+(ZK—zi)2 . (10)

To calculate the displacements of the points of the link AH its rotation centre has to be
found. The displacement of the hinge H is already known; hence the centre must lie on the
straight line which connects K with the point (y,; + v,/2, z,; + wy/2). On the other hand, the
hinge A has by hypothesis no vertical displacement and a known horizontal displacement ¢,
so that the centre of rotation must lie on the vertical line of equation

o
2= 24z, (1)

The intersection of these two lines defines the centre of rotation C [Fig. 4(a)]

ZC = - §+2A
v
(zK—zc)<yK—(yu+7"))
Ye= Yk — w ’ (12)
zK—<zH +7H)
Finally, [Fig. 4(c)],
v, = d (sin (x+ ¢,) —sina)
w;, = d(cos (¢ + ¢;)—cosa), 3
where
o = arctg <Y (14)
Zc—z
and

d= \/(YC_Yi)z‘*' (zc“zi)z- (15)



Limit behaviour of masonry arches 465

where w, and wy, are the horizontal displacements of the abutments, and H, and Hj are the
reactive horizontal forces.

Suppose for the time being that the right abutment remains fixed, while the left abutment
moves by the amount § = w, +wy. It is assumed, with no loss of generality, that the
horizontal forces act from left to right, so that one of the hinges can be placed at the first
section A. If it is assumed that the other two hinges develop at the generic sections H and K,
then the arch can be considered as two rigid links AH and HK which connect the hinges.

The rotations ¢, and ¢, of these links must be expressed as a function of the assigned 6, if
the arch has only one degree of freedom. A glance at Fig. 1(b) shows that it is possible to write

a, cos (B, —¢;)+a, cos (B, — ¢;) = a, cos B; +a, cos B,
a; sin(B; —¢,)+a;sin(f, — ¢;) =a, sinf; +a,sinf,. @)

This system can be solved numerically to obtain the unknowns ¢, and ¢,. The resulting
graphs ¢, (8) and ¢, (9) are sketched in Fig. 2. The computation is made easier by the previous
knowledge of the values 5*, ¢ and ¢9. 6* corresponds to aligned hinges, and can be easily
obtained as (Fig. 3)

0* = (a, +a)cos f—a, 3

where

. b
B= arcsm(al +a2>' 4)

*
o q"
[ !

4 .
= ] -
1 1

FiG. 2. Graphs ¢, () and ¢,(9).

FIG. 3. Two extreme possibilities: the displacement § corresponds to aligned hinges, the angles ¢
and ¢J correspond to ‘inverted’ structure at § = 0.
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The non-trivial values ¢ and ¢9 corresponding to § = 0 are shown in the same figure, and
are calculated from the formulae:

(s—d)(s—ay)
s(s—ay)
(s—d)(s—a,)
s(s—ay)

d=/a’+b? 6)

s=3%d+a; +ay) )]

¢?=4atn
&)
¢9 =4atn

where

and

Hence the system has one degree of freedom, i.e. the total displacement J of the abutments.
Once a d value has been assigned, the rotations ¢, and ¢, of both the links AH and HK can
be obtained, and then the vertical and horizontal displacements of every point of the arch can
be calculated.
The hinge K remains fixed, and it is the centre of rotation for all the points of the link HK.
Hence a generic point i, rigidly connected to this link, will have the following vertical and
horizontal displacements [Fig. 4(b)]

v; = d (sina —sin (a + ¢2))

®
w; =d(cosa —cos (x + ¢2)),
where
o= arctgu ©)
ze—z
and
d= \/(YK_Yi)2+(zx"zi)2 : (10)

To calculate the displacements of the points of the link AH its rotation centre has to be
found. The displacement of the hinge H is already known; hence the centre must lie on the
straight line which connects K with the point (y, + v,/2, z; + wy/2). On the other hand, the
hinge A has by hypothesis no vertical displacement and a known horizontal displacement 6,
so that the centre of rotation must lie on the vertical line of equation

b
2= 54z, (11)

The intersection of these two lines defines the centre of rotation C [Fig. 4(a)]

Ze=—5%2,

2

(Zx_zc)(yx_<yﬂ+'v';))
X (12)

Ye=Jk — W
zK—(zH +—§'1)

v, = d (sin (¢ + ¢,) —sin )

Finally, [Fig. 4(c)],

w, = d (cos (« + ¢,) —cos ), (13)
where '

o = arctg Yo Vi (14)
2c— 8

and

d=/(ye—y)+(zc—2)* (15)
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FiG. 4. (a) Cisthe centre of rotation for the points of the link AH, (b) displacements of the link HK,
(c) displacements of the link AH.

3. EQUILIBRIUM RELATIONSHIPS AND THRUST LINE

After the calculation of the displacements of every assemblage section, the equilibrium
equations of the deflected structure may be written. In particular the following quantities
must be zero:

(a) sum of the vertical forces acting at the link AH;

(b) sum of the horizontal forces acting at the link AH;

(c) sum of the vertical forces acting at the link HK;

(d) sum of the horizontal forces acting at the link HK;

(¢) sum of the moments at the hinge H of the forces acting at the link AH;
(f) sum of the moments at the hinge K of the forces acting at the link HK.

Another compatibility condition must be added to the above mentioned six equilibrium
conditions

CA(Hy—Hyg)—cp(Hy— Hyp) = 6. (16)

asd

+ +

F1G. 5. Active and passive forces acting on the arch.
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In this latter equation H ,; and H g, are the horizontal forces at the abutments due to the dead
load only. They are subtracted from the total forces H, and Hy because it is supposed that the
abutments move and the hinges develop only when the live load is applied. In other words, it
is imagined that the arch was built in such a way that the voussoirs remain tight so long as the
arch is subjected to the dead load only.
The six equilibrium conditions have to be written to accord with the nature of the live load.
If for example the vertical load remains fixed, while the horizontal forces vary according to
the multiplier k, then the following equations can be written (Fig. 5)
H-1
VatVu= Y Fy
i=1
H-1
H,+Hy= Z Fy

i=1

K
= (17)
—Hy+Hy+k Z F,;=0
i=H
H-1
Hy(yntog—y )+ Valzu+wa—z,—w)+k 'Zl Fo(yu+og—yi—v)
i=

H-1
+ Z ng(zH+WH—Zi—wi) =0

i=1

K
—Hy(yx—yu—vu)+ Vulex—zy—wy)+k Z Fulyx—yi—v)

1=H
K

+ Z Fsi(zx—zi—wi) =0.
1=H

These equations can be solved, together with the compatibility equation, in order to obtain
the equilibrium multiplier of the live load, and the unknown forces at the abutments.

It must be checked that the thrust line lies within the arch at each assemblage section. This
may be accomplished by calculating the sum of all the forces acting at the left of the generic
section and the sum of all the moments of these forces at the section. Then the ratio between
the moment and the normal thrust gives the required position of the thrust line at the section.

In order to calculate accurately the normal thrust at the section, it is necessary to determine
the angle of the deflected section with respect to the horizontal line. Thus, the horizontal
displacements of the centre point and of the intrados point can be calculated at each section.

—
-2 -w
z|4w| lc c

F1G. 6. Calculation of the angle ' for the deflected structure. C is the centre of the section, I is the
intrados point.
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The angle is given by
¥ = arccos ((z;+w;— 2c—w()2/s), (18)

where the meaning of the symbols is shown in Fig. 6.

4. THE EQUILIBRIUM PATH—SOME EXAMPLES

In the previous section J and the position of the hinges were assigned, and the equilibrium
multiplier k was found. If the thrust line lies in the arch at every assemblage section, then the
point (6, k) lies on the equilibrium path of the structure. If on the contrary there are sections in
which the thrust line lies outside the arch, it is necessary to move the hinges. The best
operative choice seems to put the hinges where the distance between the thrust line and the
section is largest; in this way two or three steps are sufficient to obtain the actual positions of
the hinges.

If the horizontal forces act from left to right it is easy to confirm that the left hinge A cannot
move. Therefore only the position of the other two hinges must be checked.

The above procedure can be repeated for various é values, until the equilibrium path is
known with the desired accuracy. The proposed method has no incremental or iterative
character, so that the path can be roughly sketched for some é range, while it can be accurately
drawn in other more interesting zones.

In the remaining part of this article some examples which show the various possible fates of
shallow masonry arches will be illustrated.

(a) Consider the arch in Fig. 7. The span is 10 m, the rise is 2 m, the dead load is a constant
distributed load equal to 3 tm ™!, while the live load is a (seismic) horizontal distributed load.
The right abutment is supposed to be rigid, while the left abutment has the flexibility
c, = 0.005 mt™'. Each voussoir is assumed 33 cm thick, and the arch is formed by 30 equal
voussoirs. The classical Heyman calculation on the rigid structure leads to a failure multiplier
equal to 2.4967. The hinges develop at both the abutments, at the fourth section, and at the
eighteenth section.

The equilibrium path is shown in Fig. 8. It is a monotonically increasing path, up to
0 = 18.5 cm, where the procedure fails and convergence is never reached, because there is no
compatible thrust line with only three hinges. In Fig. 9 the shapes of 10 thrust lines for 10
equidistant ¢ values are shown, from ¢ = 1.85 to 18.5 cm. At the beginning the central hinge
develops at the thirteenth section, while the righthand hinge is at the abutment. As § is
increased, both the hinges move from right to left, and finally the central hinge arrives at the
fourth section, while the righthand hinge arrives at the eighteenth section. At this é value the
thrust line reaches the extrados at the right abutment, and no further increase of é is possible.
The value of the equilibrium multiplier at 6 = 18.5 cm is slightly lower than the classical
failure load, and is equal to 2.33.

(b) Anidealized flying buttress is shown in Fig. 10(a). The span is equal to 10 m, the rise is
1 m and the righthand abutment is 9 m higher than the left one. The arch is rather thick, i.e.
1 m, hence it must be considered ‘perfect’ according to Heyman. The lefthand abutment hasa
small flexibility ¢y = 0.0001 mt~!, while the righthand abutment has the flexibility
¢, =0.02 mt~'. The dead load is a constant distributed load equal to 3 t m ™, while the live

33cm. fs =30¢cm
a=10m.

-
t

F1G. 7. First example. The classical failure load of the undeflected structure is 2.49, the failure load of
the deflected structure is 2.33.
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233

[

Fi1G. 8. Equilibrium path of the arch in Fig. 7.

18.5 d(cm.)

0+.0185 k =.205 6=.111 k=1.23
V J
V k =.372 0=.130 K=1.509
§=.0558 k..55 d=.148 ‘ k=1.735
4=.0741 k=736 0=.167 k=2.063
V %
§-.00926 k=.984 0 =185 k-2.33

T

N

N

F1G. 9. Ten thrust lines of the arch in Fig. 7 corresponding to 10 different é values.
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F1G. 10. Second example. (a) This arch should be considered ‘perfect’ according to Heyman, (b) the
equilibrium path shows a limit point at § ~ 11.5cm.

load is a horizontal distributed load subjected to the multiplier k. The equilibrium path is
sketched in Fig. 10(b), and the fate of the arch is immediately seen. All the load mulitipliers are
negative, hence the live loads act from right to left. When k reaches the value —0.45 the
lefthand abutment has a displacement equal to 11 cm and a snap-through phenomenon is
incipient. No further load increase is possible, and the value k = —0.45 has to be assumed as
failure load for this flying buttress.

CONCLUSIONS

A finite-displacement analysis of masonry arches allows the thorough examination of the
behaviour of this type of structure in some interesting ranges of the ratio rise:span. The
abutments are supposed to displace according to a simple linear relationship between reactive
forces and relative displacements. If the classical failure load exists, it can be calculated for the
deflected structure, and usually a lower coefficient than the classical one is obtained. If the
classical failure load does not exist, a limit point can be reached, where the arch has a snap-
through instability. Finally, for small elastic flexibilities, the Heyman hypothesis is verified,
and no critical load exists.
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