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It is well-known that the Timoshenko quotient always gives better results than the
corresponding Rayleigh quotient, but its implementation is not straightforward, at least for
non-uniform redundant beams. Quite recently a modified approach has been proposed [1],
in which the main difficulty is overcome, and some preliminary results were given for a
tapered beam. In this paper an iterative procedure is suggested, which leads to closer
approximations to the true results, and to dramatic improvements in the Rayleigh quotient
performances. Consequently, narrow lower-upper bounds can be deduced. Clamped beams
and clamped-supported beams with rectangular cross-sections and linearly varying height
are thoroughly investigated, providing some interesting comparisons with the results given
in [1]. The exact differential equations have been solved for this particular cross-section
variation law, in terms of Bessel functions, so that exact critical loads and free frequencies
can be used to illustrate the performance of the proposed approach. A small program was
written, by using the symbolic package Mathematica, so that a large sample of numerical
examples could be offered.
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1. INTRODUCTION

The semianalytical approach to buckling and vibration problems seems to share the
advantages of analytical and numerical methods, without their drawbacks. In fact, the
SAN method allows one to solve virtually all the structural problems which can be
numerically solved, and the results will undoubtedly be more general than in the purely
numerical case. On the other hand, the analytical solution is attainable only for particular
systems, and its usefulness seems to be limited to comparisons with more general methods.

The most famous SAN result goes back to Lord Rayleigh, who gave an approximate
formula for the upper bound to the first free vibration frequency of an elastic conservative
system. Since then, its idea was generalized to cover stability problems, and more general
eigenvalue problems for conservative systems.

A major step was undertaken by the same Rayleigh, who proposed a powerful
optimization procedure. Unfortunately, the method turns out to be non-linear in nature,
so that its practical implementation was unfeasible until the advent of powerful computers;
only recently this improvement was re-discovered by Schmidt [2], and it is now usually
referred to as the Rayleigh-Schmidt method.

A very useful companion to the Rayleigh quotient was proposed by Timoshenko [3],
who basically used the total complementary energy method, whereas Rayleigh always
started from the total potential energy of the system. Timoshenko used its quotient to
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deduce the critical loads for a large number of beam problems, and heuristically proved
that its quotient should give better results than the corresponding Rayleigh formula. The
main drawback of the Timoshenko quotient lies in the difficulty in deducing the bending
moment from the trial deflection shape, and apparently Timoshenko confined himself to
statically determinate beams, for which the problem can be trivially solved,

Later on, the Timoshenko quotient was extended by Ku [4] to statically indeterminate
beams, and the inequality

1<, M

where ¢ is the Timoshenko quotient and r is the corresponding Rayleigh quotient, was
rigorously stated as a consequence of the well-known Cauchy-Schwarz inequality (see
reference [4]).

More recently, Bhat [5] used the Timoshenko quotient in order to deduce the free
vibration frequencies, and finally Cortinez and Laura [1] suggested an important
improvement and makes it easier to use the Timoshenko quotient, regardless of the
boundary conditions.

In this paper a general procedure is suggested, which is aimed at refining the eigenvalue
prediction by using a sophisticated trial function.

The interesting point lies in the possibility of generating this function automatically,
starting from the first choice, and taking advantage of the particular boundary conditions,
cross-section variation law and loading distribution.

2. THE ITERATIVE METHOD

Consider an Euler-Bernoulli beam, with span /, Young modulus E, mass density p, cross
sectional area A4(z), and second moment of area I(z).

If the beam is subjected to an axial force P, then let w(z) be the deflection shape, and
m(z) the corresponding bending moment, so that the Timoshenko quotient can be written
as P = A/B, where

' M(z)

4= EI

dz B= J" w(z) dz. )

If the beam is subjected to inertia forces
q9(z) = — pA()w’w(2), 3)

then the Timoshenko quotient can be expressed as w? = 4/C, where:
!
C= J. pAWY(z) dz. Y}
0

Obviously, the usefulness of the quotient lies in its capability in approximating critical
loads and free frequencies, whenever the true deformed shape w(z) is approximated by a
trial function w(z) which satisfies at least the geometrical boundary conditions.

It is known that the Timoshenko quotient is less sensitive to the choice of the
approximating function than the Rayleigh quotient. In other words, a poor choice of the
trial function will result in a satisfactory upper bound, if the Timoshenko approach is
adopted, whereas the Rayleigh quotient could lead to an appreciably overestimated
eigenvalue.

If a refined result is required, then the following procedure is suggested.
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1. Starting from a trial function, calculate the bending moment m(z) by means of the
Ku method [2], or by using the Cortinez-Laura approach.

2. Calculate the first approximation of the Timoshenko quotient.

3. Integrate twice the bending moment m(z), disregarding the integration constant. In
this way a function g(z) is obtained.

4. Add to this function an ad hoc polynomial, in order to satisfy the boundary
conditions,

5. Use this function as the new trial deflection shape.

It will be shown that two iterations lead to interesting improvements of the results, and
that the Rayleigh quotient is often dramatically near to the Timoshenko quotient, if the
iterated deflection shape is used. In turn, this fact leads to narrow lower-upper bounds,
since it is known that the Hanna-Michalopoulos lower bound [6] is strongly influenced by
the discrepancy between the Rayleigh quotient and the corresponding Timoshenko
quotient.

In order to illustrate in detail this method, a calculation is presented of the critical load
of a clamped beam with unit span, and whose inertia is assumed to vary according to the
law

I(z) = I(1 + 0-9z)°. &)

It will be shown in the sequel that the exact non-dimensional critical load is equal to
105-8716.
1. The simplest trial function is given by

wi(z) = 2z — 1)}, ©)

The Rayleigh quotient can be immediately used, and a first approximation to the critical
load is obtained as

n ~ 147-4215EL/1?, @)

The Ku procedure [2] allows one to deduce the bending moment due to an unit axial force
as

my(z) = wi(z) — 0-03569z ~ 0-01736, ®)
and then (2) a trivial calculation shows that the Timoshenko quotient is equal to
t ~ 119-664EL/ 1. )

(The method recently proposed by Cortinez and Laura [1] can also be used, and actually
should be preferred, because it leads to the same quotient as above, and it is simpler to
implement.) Here, however, ¢, is about 13% higher than the true result, so that a better
approximation would seem to be useful.

3. The bending moment is then integrated twice, and the result is divided by /(z). In
this way the function g(z) is obtained, after disregarding the integration constants:

g(z) = (0-03333z° ~ 0-12° + 0-08333z* — 0-0059482* — 0-0086822)/(1 + 0-9z)° (10)

4. This function does not satisfy the boundary conditions at z = 1. By adding to it the
polynomial

az? + bz*, (11)
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the constants a and b can be chosen to fulfill the required boundary conditions. It is not
difficult to show that the second trial function is finally obtained as:

wa(z) = g(z) + 0-00158699z2 — 0-00128972° (12)
5. If this function is used, then the Timoshenko quotient becomes:
6~ 106-4414EL /1 (13)

which is just 0-5% higher than the exact value.
The corresponding Rayleigh quotient is easily calculated as:

r, & 108-0190EL/ 12, (14)

and it turns to be 2% higher than the exact critical load.
A lower bound can be deduced by using the Hanna-Michalopoulos formula [6]:

lz =l — ./ tz(rz - tz)/ ~ 98'96E10/lz (15)

A third step leads to a Timoshenko quotient #; ~ 105-8803EL/%, to a close Rayleigh
quotient r; & 106-0511EL/?, and to the corresponding lower bound / = 103-425ELI%. A
useful discussion about lower-upper bounds can be found in reference [7].

3. AN EXACT SOLUTION

Consider a beam with rectangular cross-section and linearly varying height, so that area
and inertia will vary according to the laws

A@Z) = A1 + Bz/D),  I(z) = I(1 + Bz/I)’. (16)
The equation of motion can be written as
(0Y0z)[EI(z) *w(z, 1)]02%] + pA(z) O*w(z, t)/0t* =0 amn
and its solution can be taken as
w(z, t) = V(z)e“, (18)
so that the equation of motion becomes
(d?/d2)[EI(z) d*V(z, 1)/dz?] — pA(z)w*V(z) = 0. (19
By taking into account equations (16), it is possible to write
wV"(u) + 6uV"(u) + 6V"(u) — (4/2)'V(u) = 0, (20)
with
u=1+pz/l, q=2/B, A = (pAow? EL)"A, 1)

and (') denoting differentiation with respect to .
The general solution of equation (20) can be expressed as

V) = (1//w){41lg/ul + BY lg\/u] + CLlg\/ul + DKilg/ul},  (22)

where J;, Y, , I; and K, are Bessel functions and modified Bessel functions of first order,
and 4, B, C, D are integration constants.
Two boundary conditions will be considered, corresponding to clamped-clamped and
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clamped-supported beams. In the first case the frequency equation will result by zeroing
the determinant

Llg] Yilq] Lg] Kilg]

—J[q] —Y:[q] L[q] —-Kiq] |

MoVl YigJul LigJul  KilgJa | = @3)
—LigJ/ul —Yalg/u] Llgu] —Kilg/u)

whereas in the second case the boundary conditions lead to

Jilg] Yilq] Li[g] Kilq]
-Lklgl -Yq] Llgl  —Kiq]
Maval YieJdl Ligyal Kilgyad| =" @9
Llgy/ul Ylg/ul Llgy/ul Kalg/ul
For the stability analysis the differential equation is
[EIZ)W")" + Pw" =0, 25
or else
EIZ)w" =m, El(z)m" + Pm = 0. (26)
Upon taking into account the variation law of the cross-sectional inertia, the second of
equations (26) becomes
m” + (PP/EL)(1/fu*)m = 0, 27
or else
m” + (p/u*)ym = 0. (28)

This is a Bessel equation, which can be solved as

m(u) = — AJuli[2/p//ul — BJuYi12/p/\/u] 29)

Finally, one has:
wu) =m@) + Cu+ D. (30)

The four integration constants have to be defined by imposing the boundary conditions.
For the clamped-clamped beam the critical load parameter p will be obtained by satisfying
the equation :

—1i12/p] ~Y\[2\/p]
—/Ph2/p] —/PYa[2/p]

[ I
S -0 =

=0, 31

N AN/ ING NN/ NG GH

N e N INC RN YNNG
whereas in the clamped-supported case it is possible to arrive at:

~3[2/7] -Yi2\/7] 11

-/Ph2/p] -JpYi2/p) vol_,
—Juli2\/p/ /u] A ANIND) w 1|7
00

AP pI i) — Gl SN2 /pIa]  2/phYal2y/pl/u] = ol [u)Y(2/pI/u)
. 32

In all the cases a bisection routine can calculate the eigenvalue within machine precision.
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4. NUMERICAL RESULTS

The proposed approach has a general range of validity, and it can be potentially applied
to beams with every kind of boundary conditions, and with generally varying
cross-sections.

In order to illustrate its capabilities, clamped-clamped beams and clamped-supported
beams with rectangular cross-section and linearly varying heights will be examined (cf.
equation 16). In this way numerical comparisons with exact results can be performed, by
solving the frequency equations and the critical load equations deduced in the previous
section.

In Table 1 the critical loads of a clamped-clamped beam are given, with g allowed to vary
between —0-9 and 0-9. In the second column the exact results are given, as obtained by
zeroing the determinant, in the third column the Timoshenko quotient is given, as obtained
by using the simplest trial function (cf. equation 6), and in the fifth column the corresponding
Rayleigh quotient is shown. (It is worth noting that the Timoshenko quotient can be
obtained by using the Ku method [4] or the Cortinez-Laura suggestion [1], but this latter
approach should be preferred because of its intrinsic simplicity. In order to stress this fact,
in the Appendix the general formula for obtaining the critical loads is reported, for every
value.) In the fourth and sixth columns the iterated Timoshenko quotient and Rayleigh
quotient are given.

As can be easily seen, the use of more refined functions leads to noticeable improvements
of the Timoshenko quotient precision, at least for high § values, and these improvements are
even more pronounced for the Rayleigh quotient. Consequently, as already said, the Hanna-
Michalopoulos lower bound increases, and a satisfactory lower-upper bound can be
deduced.

In Table 2 the critical loads for clamped-simply supported beams are given, and in Tables 3
and 4 the free vibration frequencies are reported for clamped-clamped and clamped-
supported beams, respectively. The same qualitative behaviour as in Table 1 is observed.

TABLE 1
Critical loads for clamped-clamped beams, for different taper ratios

Timoshenko Timoshenko Rayleigh Rayleigh
B Exact result Ist approx. 2nd approx. 1st approx. 2nd approx.
—09 1:6700 6-0064 2:3313 14-3385 4-4283
—0-8 4-0853 7-9927 47434 15-4080 6-5326
-07 7-0449 10-406 7-6210 16-7895 9-1343
—-06 10-479 13-235 10-864 18-564 11-915
—05 14-349 16-513 14-455 20-812 14-789
—-0-4 18-626 20-229 18-654 23-616 18-747
-03 23-291 24414 23-319 27-056 23-397
-0-2 28-330 29-088 28-354 31212 28-424
-01 33-729 34276 33-754 36:167 33-833
0 39478 40-000 39-508 42-000 39-600
0-1 45-570 46-284 45-604 48-794 45-710
02 - 51-995 53-153 52037 56628 52-160
03 58-749 60-630 58-802 65-585 58-954
0-4 65-825 68-740 65-899 75-744 66:103
0-5 73217 77-509 73-327 87-188 73-625
0-6 80-922 86961 81-091 99-996 81-544
0-7 88-935 97-120 89-193 11425 89-890
0-8 97-253° 108-01 97-641 130-03 98-701

09 105-87 119-66 106-44 147-42 108-019
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Critical loads for clamped-supported beams, for different taper ratios

Timoshenko Timoshenko Rayleigh Rayleigh
-0.0 Exact result 1st approx. 2nd approx. 1st approx. 2nd approx.
-09 0-8748 2:3114 1-3806 8-0063 3-4848
-0-8 2-1189 36113 26127 8-6400 4-3333
~07 3-6344 50519 4-0804 9-4238 5-5045
~06 5-3884 6:6611 5-7550 10-380 6-8777
-0-5 7-3622 84512 7-5311 11-531 8-0443
—04 9-5434 10-431 9-5605 12:900 9-6280
-03 11923 12:607 11:975 14-509 12-166
-0-2 14-494 14-986 14-499 16-380 14-522
-01 17-252 17-574 17:255 18:536 17-263
0 20-142 20-377 20-207 21-000 20-243
0-1 23-308 23-401 23-343 23794 23-423
0-2 26-600 26651 26-661 26940 26-802
0-3 30-063 30-133 30-163 30-461 30-391
0-4 33-697 33-853 33-853 34-380 34-206
05 37-498 37815 37736 38-719 38-268
0-6 41-465 42027 41-819 43-500 42-605
07 45-596 46-492 46-112 48-746 47-248
0-8 49-889 51218 50-626 54-480 52238
09 54-343 56-208 55-377 60-724 57-629
TABLE 3

Free frequencies for clamped-clamped beams, for different taper ratios

Timoshenko Timoshenko Rayleigh Rayleigh
] Exact result Ist approx. 2nd approx. Ist approx. 2nd approx.
—-09 9-8846 11107 10-061 17-687 11-336
—08 11-842 12-660 11919 17-554 12-552
-0-7 13-483 14-038 13-518 17-606 13-848
—06 14962 15-331 14970 17-839 15101
-05 16-336 16-572 16:346 18-248 16-463
—04 17-634 17777 17-676 18-821 17-968
-03 18-879 18-954 18-908 19-544 19-111
-02 20-078 20-111 20-090 20-400 20-171
=01 21-241 21-251 21-244 21-374 21-262
0 22:373 22-376 22:373 22-445 22-373
0-1 23-480 23-489 23-480 23614 23-498
0-2 24-563 24-591 24:573 24-855 24-638
03 25-628 25-684 25-649 26:160 25-797
0-4 26674 26:769 26713 27-522 26985
0-5 27705 27-847 27769 28-931 28-210
0-6 28722 28917 28-818 30-381 29-483
0-7 29-726 29982 29-864 31-868 30-814
0-8 30-718 31-041 30910 33-385 32213
09 31-700 32-095 31956 34929 33-693
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TABLE 4
Free frequencies for clamped-supported beams, for different taper ratios

Timoshenko Timoshenko Rayleigh Rayleigh
B Exact result Ist approx. 2nd approx. 1st approx. 2nd approx.
—09 8:6300 9-3027 8-8611 13-618 10-473
—0-8 9-7995 10-235 9-9045 13-396 10-754
-07 10-737 11-026 10-788 13-319 11-247
—0-6 11-556 11-747 11-579 13-366 11-813
—05 12-300 12:422 12-303 13-521 12-353
—04 12:990 13-064 13-014 13-768 13-220
-03 13-640 13-681 13-667 14-095 13-915
—-02 14-258 14-277 14-265 14-491 14-336
-01 14-849 14-856 14-850 14-945 14-862
0 15418 15419 15-418 15-451 14-418
0-1 15-969 15-970 15-970 16-000 15-983
0-2 16-503 16-509 16-508 16-587 15-556
0-3 17-023 17-037 17-033 17-206 17-144
0-4 17-530 17-556 17-549 17-853 17-756
0-5 18-026 18-066 18:057 18-523 18-400
0-6 18:511 18-569 18-559 19-214 19-088
0-7 18-987 19-064 19-057 19-924 19-829
0-8 19-455 19-552 19-551 20-649 20-635
09 19-914 20-034 20-045 21-517 21-387

5. CONCLUSIONS

Starting from a poor trial function, a method for generating more refined trial functions
has been devised, which allows some improvements in Timoshenko quotients and even
more in Rayleigh quotients.

This method has been applied both to stability analysis and dynamic analysis of tapered
beams, and numerical results have been presented for clamped beams and propped
cantilever beams.

In order to perform numerical comparisons, exact stability and dynamic analyses of
tapered rectangular beams with linearly varying height have been given, by solving the
difference equations in terms of Bessel functions.

REFERENCES

1. V. H. CorTINEZ and P. A. A. LAURA 1994 Journal of Sound and Vibration 169, 141-144. An
extension of Timoshenko’s method and its application to buckling and vibration problems.

2. R. ScHMIDT 1985 Industrial Mathematics (The Journal of the Industrial Mathematics Society)
35, 69-73. Towards resurrecting the original Rayleigh method.

3. S. P. TimosueNKO and J. M. GERe 1961 Theory of Elastic Stability. New York, McGraw-Hill
Book Company.

4. A. Ku 1977 International Journal of Solids and Structures 13, 709-715. Upper and lower bounds
of buckling loads.

5. R. B. BHAT 1984 Journal of Sound and Vibration 93, 314-320. Obtaining natural frequencies of
elastic systems by using an improved strain energy formulation in the Rayleigh-Ritz method.

6. S. Y. HANNA and C. D. MicHALOPOULOS 1979 Journal of Applied Mechanics (ASME) 46,
696-698. Improved lower bounds for buckling loads and fundamental frequencies.

7. P. A. A. Laura and V. H. CorTiNEZ 1980 Journal of the Acoustical Society of America 80,
1086-1090. Optimization of the Kohn-Kato enclosure theorem: application to vibration
problems.



TIMOSHENKO QUOTIENT FOR TAPERED BEAMS 261
APPENDIX

In order to deduce the first-order Timoshenko quotient for tapered rectangular beams
with linearly varying height, a small symbolic program was written, which essentially
reproduces the simplified theory given by Cortinez and Laura [1].

The non-dimensional quotient can always be expressed as:

t = (A/B)EL/I), (33
where, for the critical loads of clamped-clamped beams,
A =122p" — 2" log (1 + p) — ' log (1 + B)), (34
B =7(64808° + 16 2008* + 13 9208° + 46808° + 51287 + 165° — 64808 log (1 + B)
— 194408° log (1 + B) — 21 4808*log (1 + B) — 10 5608° log (1 + B)
—2232f%1og (I + B) — 19287 log (1 + B) — 3B%log (1 + )
— 64808 log (1 + B)* — 22 68082 log (1 + B)* — 30 2408° log (1 + B)’
— 189008 log (1 + B)? — 54008° log (1 + B)* — 5408°log (1 + B)?
+ 6480 log (1 + B) + 259208 log (1 + B)* + 41 0408 log (1 + B)°
+ 324008 log (1 + B)’ + 13 1408*log (1 + B)*
+ 25208°log (1 + B)’ + 1808°log (1 + B)°). (35)
for the critical loads of clamped-supported beams,
A =43202p"° — "' — 28°log (1 + B)), (36)
B = (7(103 6808 + 349 9208° + 435 7208 + 243 1208° + 55 546f° + 130287 — 754*
— 207 3608 log (1 + B) — 803 5205 log (1 + B) — 11 906408° log (1 + B)
— 8319608*1log (1 + B) — 268 4168° log (1 + B) — 30 7508°log (1 + B)
+ 103 680 log (1 + B)* + 453 6008 log (1 + B)* + 780 84082 log (1 + B)?
+ 660 9605° log (1 + B)* + 278 6408*log (1 + B)*
+ 51 8408°log (1 + B)* + 32408° log(1 + B)*), €)
and finally, for the free frequencies of clamped-clamped beams,
A = —5544000(4p" + 28" — 48" log (1 + B) — 4p" log (1 + B) — 28" log (1 + B)), (38)
B =(—12936008 — 5821 2005> — 8 710 2408° — 3 320 2408* + 1 447 6008°
— 1663 2008° — 2244 08857 + 517 7485% + 14 5748° — 249 431"
+ 1293600 log (1 + B) + 6468 0008 log (1 + B) + 11 513 0408%log (1 + B)
+ 7244 1608° log (1 + B) — 304 9208%log (1 + B) + 896 2808° log (1 + B)
+ 3195 5008° log (1 + B) + 412 72087 log (1 + B) — 360 9208 log (1 + B)
+ 315 1408° loé (1+ B)+ 903908 log (1 + B)) 39)
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and finally, for the free frequencies of clamped-supported beams,
A =13860008"(76 + 438)(—28 + B>+ 2log (1 + B)), (40)

B = (—10 348 8008 — 64 680 0008> — 139 665 6808° — 100 221 6608* + 14 144 1308°

— 221359608 — 90 856 38187 — 20 828 5008° + 11 805 2205° — 10 984 6308'"

— 8578 425B" + 10 348 800 log (1 + B) + 69 854 4008 log (1 + B)

+ 171 143 2808 log (1 + B) + 165095 7008* log (1 + B)

+ 26 749 8008 log (1 + B) + 11 018 7008° log (1 + B) + 104 658 4008 log (1 + B)

+ 62991 39087 log (1 + B) — 7 142 1008% log (1 + B) + 5916 7508° log (1 + B)

+ 14 414 4008 log (1 + B) + 3 346 2008" log (1 + B)). @1



