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In this paper a general dynamic analysis of a foundation beam on Green-Boussinesq soil is per-
formed, taking into account the instabilizing effect of conservative and nonconservative applied
axial loads.

The beam is reduced to a finite number of rigid bars, linked together by elastic springs; the
equations of motion are written by means of the Lagrange equations. The kinetic energy and
the total potential energy are calculated first, and emphasis is placed to the strain energy of the
Green soil; then the virtual work of the applied follower loads is detected, which allow us to
define the generalized forces. The resulting equations of motion lead to an eigenvalue problem
with unsymmetric matrix.

Initially, the first free vibration frequencies of simply supported beams, clamped beams and
free beams are plotted as functions of the two soil parameters. A more complex beam is also
examined, in order to show the method potentialities. A stability analysis in the presence of con-
servative axial loads is then performed, and the influence of the soil on the critical load is discussed,
both for simply supported beams and clamped beams. Finally, the instability mechanism of a
clamped — clamped beam subjeced to a uniformly distributed follower force is shown to be deeply
influenced by the presence of the soil. (A number of graphs and examples conclude the paper.)

1. INTRODUCTION

The aim of the present note is to study the free vibrations
of a foundation beam resting on a Green soil, taking into
account the influence of the applied axial forces, both of
conservative and nonconservative nature.

The beam is supposed to be constrained in quite a
general way, by introducing m elastically flexible sup-
ports and n elastically flexible hinges (Fig. 1), so that it
is possible to immediately recover every particular system.

The soil behaviour is assumed to follow the Boussinesq-
Green model; according to it a distributed load r(z’) dz’
centered at the abscissa z’ causes a displacement graph
v(z) which can be expressed as:

Wz) = c(z, 2') d7'. 1))

The function ¢(z, z') is usually called the ‘influence line’
(or the Green function) of the displacements due to the
forces, and completely defines the adopted soil model.

The applied forces can be divided into conservative and
follower forces. To the first set of forces a potential energy
can be associated, which is a quadratic function of the
Lagrangian coordinates, and leads to a symmetric matrix.
The follower forces, on the other hand, cannot be
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associated 'to any potential energy, by definition. Their
influence on the free vibration frequencies can be taken
into account by calculating their virtual work due to a
virtual variation of the Lagrangian coordinates. Follow-
ing this path, they give rise to an unsymmetric matrix.

The structure is studied according to the cells discretiza-
tion method, in which the beam is reduced to ¢ rigid bars,
connected by n = ¢ + 1 elastic springs (‘cells’). The elastic
strain energy of the rigid bars is supposed to be concen-
trated at the cells, by defining the following local stiff-
ness cocfficients (Fig. 2):
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where a is the length of the rigid bars, and [, is the
second moment of area of the cross section at the middle
point of the ith bar. For the sake of simplicity, it was
assumed that each rigid bar has equal length a, but this
is by no means mandatory.

The extensional flexibility ¢; of the elastic cells must
also be introduced, in order to simulate the real constraints.
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Fig. I.

The total flexibility f; of the ith cell is given by:

1
ki+c

fi 3

and the total stiffness coefficient k; is given by U/f;. In
this way it is possible to place a hinge at the abcissa
z = ai by defining c; = oo, whereas a clamped end cor-
responds to ¢, =0 or ¢, =0, respectively. The elasti-
cally flexible supports are defined by their axial stiffness
s;, in such a way that 5; = o corresponds to perfect
support, whereas finite stiffness values give a flexible sup-
port. If all the axial stiffness s; are equal to zero, then
the axial forces acting on the beam must be self-
equilibrated.

The mass of the beam is lumped at a finite number of
sections. If, for example, the masses are concentrated at
the cells abscissae, then the ith mass is given by:

i=l"i—l+u'ia
2
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where p(z2) is the mass density function, and g is the
mass density at the middle point of the ith rigid bar.

Finally, the Green function ¢(z, z') can also be discre-
tized, by defining its values at the centre of the ¢ rigid
bars. In this way, a square matrix C is generated, which
can be defined as ‘Green displacement matrix’ of the soil.
Its C; term represents the displacement of the ith cell
due to an unitary force at the jth cell. The matrix C is
obviously symmetric and positive definite. Its inverse
— let us call it R — is the ‘Green force matrix’ of the
soil. Its generic term ry is the force at the ith cell due to
an unitary displacement at the jth cell.

The applied load distribution will be accordingly reduced
1o a set of n concentrated forces at the cells abscissae.
Moreover, each force will be divided into its conserva-
tive part P’ and its nonconservative (follower) part F;, so
that the global external loading is reduced to a couple of
n dimensional vectors P and F.
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Fig. 2. Local stiffness coefficient
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The structural system, with n elastic cells, ¢ hinges and m elastic support

Once the previous discretizations are carried out, the
structure is reduced to a finite degree of freedom holono-
mic system. The n Lagrangian coordinates can be arbi-
trarily chosen; for exmaple it is possible' to assume as
Lagrangian coordinates the n displacements of the n cells.
However, in the following we shall assume as Lagrangian
coordinates the rotations of the rigid bars, and the dis-
placement of the first cell, as already done in Ref. 2.

2. THE EQUATIONS OF MOTION

In this paragraph the kinetic energy will be calculated,
together with the strain energy and the potential energy
of the conservative applied loads. The virtual work of the
follower loads will allow us to define the corresponding
generalized forces, so that a straightforward application
of the Lagrange equations will permit to deduce the equa-
tions of motion. The solution of these differential equa-
tions lead to an eigenvalue problem, which gives the free
vibration frequencies and the free vibration modes.

2.1 The kinetic energy
If v is the n-dimensional vector of the transverse

displacements, then the kinetic energy is a quadratic func-
tion of the velocities:

=% Y 5)

which can be written conveniently as:
T = %y™™MvV ©)
where M is the (diagonal) mass matrix.

If ¢ is the n-dimensional vector of the Lagrangian
coordinates:

"= (b, B M) M
then the relationship between v and ¢ can be expressed as:
v="Vc (8

where V is a square (1, n) matrix, given by

i=1,...n j=1,...i-1

V,i=1 j=1,...n &)
It follows that the kinetic energy has to be written as:
T = %¢"VIMCe = %heMe (10)

where M is a full square matrix.



2.2 The strain energy

The strain energy L is a quadratic function of the
Lagrangian coordinates:

L = %c"Ke an

where K is the global stiffness matrix. The strain energy
is due to the bending strain energy L of the cells, to the
extensional strain energy L, of the supports, and to the
strain energy L, of the soil. Every mutual energy is zero,
so that:

L=L+L+1L (12)
The bending energy L, can be easily expressed as:
- 5
Lf= E E kg, (13)
i=|

where , is the relative rotation of the ith cell. It is:

=g
Vi=d—diy i=2,...n-1 (14)
d’n = 1¢n—l
and consequently:
Lf:" %CTKfC. (15)

k; is a n-dimensional three-diagonal matrix, whose
elements are given by:

Ki=k +k,, i=1,...n-2 (16)
Kiivts Kivor = =k i=1,...n=2 (17
Ky ynoy =k, (18)
kin, Koy =0 i=1,...n (19)

The extensional strain energy of the m flexible supports
is given by:-
L= ! 2’”: s;d? -(20)
2 i=l
where s; is the axial stiffness of the ith support, and d,
is the corresponding displacement.

If this support is placed on the jth rigid bar, it will be
{(Fig. 3):
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Finally, the strain energy of the Green soil can be
expressed as':
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On the other hand, it is:
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Fig. 3. The Lagrangian coordinates

After some algebra, it is possible to arrive to:
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so that L, can be written as a quadratic function of the
vertical (flsplaccments, by introducting the matrix K,

L= %K, @5)

The matrix K, is rather complex, and it is summarized
in Table 1", Fxnally, the strain energy L, of the soil has
to be expressed as a quadratic function of the Lagrangian
coordinates, as follows:

L, = %c"VTK, Ve = 'K ¢ (26)
Table 1. The Green soil matrix
K,,,I = %rl',
K, =3(r+ri_iim + riis) i=2,...n—1
K,,‘, = érrhl,n—l
K, = %(Zr,j +rgatriopt2riogga) 1<i<n- 2
i<j<n
,,,,—6(27|J+r111) I<j<n
,,,.=%(r,n|+2r.|nl) I<i<n-1
K, .= %r.',,_,




The influence coefficients r; depend on the soil
behaviour and therefore can be calculated if and only if
the ‘flexibility function’ ¢(z, ') is defined. In this way
the Green displacement matrix C can be deduced, and its
inverse R can be immediately calculated.

The total strain energy is given by:

L=1%c"Ke . @7
where:
K=K, +K+K,. (28)

2.3 The potential energy of the conservative axial
forces .

As mentioned previously, let us suppose that P is the
n-dimensional array of the conservative forces.

The ith force P, is applied at the ith cell absissa, and
its ‘potential energy is given by:

i-1

1
E =Pw =2 P Y adt (29)
J=1

The potential energy of the n forces is equal to:

1 n i-1 ) 1
E=2 Y P ) a¢l=3 c'Be (30)

=l j=1

where B is a diagonal n-dimensional matrix, whose terms
are given by:

Bi=a Y, P i=1,...n-1 (31)

J=i+l

B,.=0 32)

2.4. The virtual work of the applied follower forces
The virtual work of the non-conservative force @, can
be calculated as follows. Let us assign an arbitrary vec-
tor of Lagrangian coordinates, and a virtual variation of
the ith coordinates (Fig. 4). The virtual work of Q, is

2
il o

Fig. 4. Virtual variations of the Lagrangian coordinates

-given by:
8Ly = Q. (¢; — dn-1)0%: (33)
in we assign a virtual rotation at the ith bar, and by:
oL, = —Qndbp-19, (34)

if a vertual displacement is assigned to the first cell.
The virtual work of 0, can therefore be expressed as:

8L = §,5¢ (35)

where S, is n-dimensional unsymmetrix matrix, whose
elements are given by:

5P =0, i=1,...n-2 (36)
M =0 €]
sm, =-0, i=1,...n (38)

If the force is acting at the kth cell, then the correspond-
ing matrix will be given by:

S =0, i=1,...k—1 (39)
SY_, = -0, i=1,...k (40)
$Y-1 = — 0 (41

Finally, the matrix S of the nonconservative forces is given
by:

s= Y s® “
k=2

The Lagrange equations lead to the following equation
of motion:

Mé + (K — uB — 11,8)e =0 43)
and the following eigenvalue problem can be deduced:
(-0™M +K,)g =0. (44)

It is is perhaps worth noting that a general eigenroutine
must be used, because the matrix

is unsymmetric. We used a classical QR routine, as
developed by Francis, or a subroutine from the ‘DAMP’
subroutine by Gupta.

FREE VIBRATIONS IN THE ABSENCE OF
AXIAL LOADS

If the structure is not subjected to external loadings, then
the equations of motion reduce to:

Mé¢ + Ke=0 (46)

and the resulting eigenvalue problem has real eigenvalues.
In fact, from 2 numerical point of view, this conservative



problem is much simpler than the general one, and cor-
respondingly simpler subroutines can be used.

As already stated, the soil model has to be defined, by
choosing a flexibility function c(z, z’). While this choice
is a complex problem, fortunately it is not of crucial
importance here. We shall therefore assume a simple func-
tion, by hypothesing that the soil is homogeneous, but we
would like to emphasize that the analysis remains
unchanged if a more complex soil behaviour is assumed.

Let us define:

£= én

and let us assume that the proposed flexibility function
has the following simple expression:

o
1+ re

oz, 2)=c(h) = (48)

The two parameters ¢, and r can be given a physical
meaning, by observing that C; is equal to ¢(0), and by
imposing that r assumes a value c,/m at a defined
abscissa {,,. It follows that:

im—l

o

49

r=

The real coefficient m > 1 can be called ‘reduction fac-
tor’ and the Winkler soil model is recoverad as m goes
to infinity (Fig. 5).

In order to examine the influence of the Green soil
behaviour, let us suppose that the second moment of area
and the distributed mass can be assumed to be constant
along the span of the beam. It is also convenient to define
the non dimensional ‘soil coefficient’:

14

where k, = 1/¢c;, and the non dimensional frequency

= (wf %) 6D

In the Figs 6; 7 and 8 the first three adimensional fre-
quencies are plotted vs. the soil coefficient A, for various
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Fig. 5. The proposed flexibility function of the Green soil
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Fig. 9. A classical bridge structure

reduction factor values. Figure refers to the cantilever
beam, Fig. 7 deals with the simply supported beam,
whereas in Fig. 8 the free beam i$ examined.

In each case the reduction factor m = 1000 reproduces
the Winkler values, while lower reduction factor values
lead to noticeable lowering of the frequencies, at least if
\ is large enough.

Another, more complex beam is sketched in Fig. 9. It
is a typical bridge structure, whose total span is equal to
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Fig. 10. Graph of the first two frequencies of the beam
in Fig. 9 vs the non dimensional soil toefficient

26 meters, while the two lateral spans are 10 meters each.
The inner hinges are symmetrically placed at z = 10 and
z = 16 meters. The beam has been studied by dividing
it into 26 rigid bars, and in Fig. 10 the graph of the first
two adimensional frequencies is sketched vs. non dimen-
sional soil coefficient, for various reduction factor values.

STABILITY ANALYSIS IN THE PRESENCE OF
CONSERVATIVE AXIAL LOADS

If conservative axial forces act on the system, then the
equation of motion (43) reduces to:

Mé + (K — uB)e =0 (52)
and the corresponding eigenproblem:
[~w™ + (K — uB)]q =0 (53)

has real eigensolutions. As the axial loads increase, the
frequencies decrease, and the first frequency becomes zero
when p reaches the critical value. In this case, instability
can only occur by a divergence mechanism, so that the
critical load values can be detected more directly by
imposing:

det(K — uB) = 0 (54)

The emphasis is here on the soil influence, so that we shall
examine the critical load as a function of the two soil
parameters A and m.

In Figs 11 and 12 the graph of the non-dimensional
critical load:

y=— (55)
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Fig. 11 Graph of the critical load of a simply supported

beam subjected to a conservative axial load at its right
end, vs. the non dimensional soil parameter
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Fig. 12. Graph of the critical load of a cantilever beam
subjected to a conservative axial load at its right end, vs
the non dimensional soil parameter

is reported as a function of the non dimensional soil
parameter, for various values of the reduction factot m.
Figure 11 deals with the simply supported beam subjected
to a single axial force F at the right end, while the
cantilever beam is examined in figure 12 for the same
loading condition. In figure 11 the points of overlapping
critical loads are clearly shown, corresponding to a well-
known phenomenon for the simply supported beam on
Winkler soil (see for example Ref. 3 pp. 50-~54).

INSTABILITY MECHANISM OF PSEUDO-
CONSERVATIVE SYSTEMS ON ELASTIC SOIL

The well known Sundararajan theorem* states that ‘the
critical load of an undamped, linearly elastic column sub-
jected to stationary forces (conservative or nonconser-
vative) does not decrease due to the introductioh of a
Winkler type elastic foundation having modulus distribu-
tion geometrically similar to the mass distribution of the
column’.

Moreover, a number of other papers have shown that
the flutter load of the Beck rod and Pfliiger rod is unaf-
fected by the presence of the soil'®, while in other cases
the flutter load can decrease with dissimilar distribution
of the column mass and foundation stiffness®. Therefore,
it seems useless to examine the influence of the soil on
the flutter loads of non-conservaative systems.

On the other hand, a class of structures exist which are
subjected to non-conservative forces, but nevertheless ex-
hibit divergence critical loads. These kind of structures
are called pseudo-divergence systems by Leipholz’ or
also pseudo-conservative systems by Huseyin®, and are
mathematically recognized because the product

MK, .

is symmetrizable®. From a physical point of view, they
always lack stability by divergence, but additional flutter

loads exist, whose magnitude is greater than the divergence
load. Thereofre, Leipholz states that ‘these flutter loads
are of little practical importance’ (Ref. p.331).

In the following, we shall show that these flutter loads
regain their importance, because the soil presence can
transform the pseudo-divergence systems in truly non-
conservative systems, whose primary flutter load coin-
cides with the previously defined flutter load. To be more

_precise, let us consider a clamped-clamped beam with con-

stant cross section and constant mass distribution. If the
beam is subjected to uniformaly distributed follower forces
(Fig. 13), then it is known that the first two critical loads
are given by:

EI

El
8% =139.36 75

In addition, a flutter load g, exists, whose magnitude is
greater than g@.

If the soil influence is considered, then the flutter load
remains unaffected, while the divergence loads increase.
A (critical) value of the soil parameter will exist, which
corresponds to passage from divergence to flutter. Mathe-
matically, this means that the product:

MK,

is no more symmetrizable.
In Fig. 14 the behaviour of the first two frequencies
is plotted vs. the adimensional load parameter:

_g’
Y= E

for various values of the modulus of subgrade regions,
and by hypothesing Winkler soil.

As it is immediate to realize, the system behaviour is
dramatically changed by the soil influence.

In fact this is quite a general conclusion: the whole graph
is shifted to the ‘right’ by the soil presence, so that every
pseudo-conservative system will become a nonconservative
system, if a sufficiently strong soil is added.

CONCLUSIONS

The free vibrations of a foundation beam on Green-
Boussinesqu soil have been calculated, in the presence of

s
E RS - E
= i
~T LS — —
Fig. 13. Clamped-clamped beam subjected to uniformly
distributed follower forces: one of the simplest example
of pseudo-divergence system '
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conservative and nonconservative axial loads. The in-
fluence of the soil behaviour is examined, with respect
to ‘the frequencies of free vibrations in the absence of
applied loads, and non dimensional graphs are given for
three common beams and a moré complex structure. From
these graphs it is possible to deduce:

(i) the frequencies of a foundation beam on Green soil
are always lower than the corresponding frequencies
of the beam on Winkler soil,

(i) the differences are significant only if the soil is quite
rigid.

The critical load of cantilever beams and simply supported
beams is plotted as functions of the two soil parameters.
It is evident from these graphs that the critical load of a
foundation beam on Green soil is lower than the corre-
sponding critical load of the beam on Winkler soil. Finally,
pseudo-divergence systems are shown to become truly
non-conservative systems if sufficiently rigid soil is
introduced.
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