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Abstract—A simple numerical approach to the dynamic behaviour of a general thin-walled beam is
proposed, in the presence of flexible constraints and non-uniform cross-section. Coupled bending and
torsional vibration frequencies can be obtained for an arbitrary non-symmetrical cross-section, and the
presence of intermediate concentrated masses and elastic constraints can be easily dealt with. The
equations of motion are obtained by using the Lagrange equation, and explicit formulae for the strain
energy and the kinetic energy are given. The highly banded form of both the stiffness matrix and the mass
matrix is fully exploited in the eigenvalue routine.

Numerical comparisons and examples end the paper, in which lower—upper bounds to the true results are
given for a channel beam with various boundary conditions. The lower bounds were obtained by using the
proposed method, whereas the upper bounds were obtained by applying for the first time—to the authors’
knowledge—the Rayleigh-Schmidt method to a coupled bending torsion problem. Numerical investi-
gations are also reported, to show the influence of the support flexibilities on the vibration frequencies.
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1. INTRODUCTION

It is known from the classical beam theory that
bending vibrations and torsional vibrations decouple
if and only if the shear centre of the cross-section
coincides with the centroid. Otherwise, coupled
bending—torsional vibrations arise, with the ensuing
increase of the computational cost. Moreover, a
beam with thin-walled open section is also subjected
to a noticeable warping, so that inclusion of the
non-uniform torsion effects becomes unavoidable.
Finally, quite frequently thin-walled beams have non-
constant cross-sections—as, for example, in the air-
plane wings—and a careful design cannot neglect the
flexibilities of the constraints.

The structural problem becomes rather complex,
analytical solutions are not available, and finite el-
ement methods lead to large eigenvalue problems. On
the contrary, in this paper a discretization method is
proposed, which is enough general to allow the study
of non-symmetrical non-uniform thin-walled beams
with elastically flexible supports, but at the same time
it is simply enough to permit extensive numerical
investigations. It is also perhaps worth noting that the
proposed approach furnishes lower bounds to the
true results, whereas the finite element method gives
upper bounds.

Let us consider a general beam with a non-
symmetric cross-section, and let us fix a right-handed
Cartesian coordinate system (x,y,z), as shown in
Fig. 1. The origin of the system will be the centroid
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of the section, so that the coordinates of the shear
centre are {x,(z), y,(z)}. The cross-section is assumed
to vary arbitrarily along the z-axis, in such a way that
the moments of inertia I, I, along the x-axis and
y-axis, the torsional rigidity C, and the warping
rigidity C, are arbitrary—even discontinuous—func-
tions of the z coordinate.

The beam will be discretized according to the cell
method, and consequently it will be divided into a
number ¢ of rigid bars, connected together by means
of (¢t + 1) elastic cells. Each cell can move along the
x-axis and the y-axis, and can rotate around the
z-axis. It follows that the deformed shape of the beam
will be defined by the (z + 1) values u; of the cell
displacements along the x-axis, by the (¢ + 1) values
v, of the cell displacements along the y-axis, and by
the (r + 1) values 9; of the cell torsional rotations
around the z-axis.

The structure has 3(¢#+1) Lagrangian
coordinates, which can be ordered into the array
cT={u, u,... vy Vipts S1hean i)
={c],c],c]}.

Each cell is defined by the following four-dimen-
sional diagonal local stiffness matrix:
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Fig. 1. General non-symmetrical cross-section.

in which E is Young’s modulus, G is the shear
modulus, and /; is the length of the ith rigid bar. It

is also:
Zi
1x,=f L(z)dz, i=2,...,¢ O
2~y
5h/2
I,= f I.(z)dz, (0]
0
1
Ix,r+ 1= J' L(z)dz, (3)
=42

where z,= Z{Z} ]+ /;/2. Similar formulae hold for I,,
C, and C,.

The distributed mass m(z) can be expressed as
pA(z), where p is the mass density and A4(z) is the
cross-sectional area. It can be lumped at the cells
abscissae, and the following concentrated masses are
obtained:

m,-=pJ‘ A@z)dz, i=2,...,¢ (©))
zi—1

h2
m1=PJ A(z)dz, )]

¢

1
mt+l=pf A(z) dz. )
=42

Both the kinetic energy and the strain energy become
quadratic functions of the Lagrange coordinates, and
must be expressed in terms of the above-calculated
local quantities.

2. THE STRAIN ENERGY

The strain energy of the structure can be expressed
as the sum of the following quantities:

L=Ly+Ly+Lpn+Ln+L,
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where L, and L, are the bending strain energies, Ly
is the torsional strain energy due to the De St Venant
torsion, Ly, is the torsional strain energy due to the
non-linear ‘Vlasov’ torsion, and L, is the strain energy
of the flexible external constraints.

2.1. Bending strain energy

The bending strain energy of the structure is given
by:

t+1

1
L= L,+ L,= 2 z_‘,l k% + kyx'/’}zri) )

where k,; = El,/l;, k,;= EL,[l;, and ¥, ¥, are the
relative rotations between the two faces of the ith cell
in the x and y directions, respectively.

In order to express the relative rotations as func-
tions of the Lagrangian coordinates, it is possible to
deduce from Fig. 2 the following relationships:

v _ Vi1 0 U
W= T T
h e,

V-1

®)
and:
Y= Ui "W Wi~ Uiy . )

Let us assume, for the sake of simplicity, that the
length of the rigid bars is constant, and equal to /.
In this case eqns (8) and (9) become:

Vip1— 20,40,y

Yu= % (10)

and:

Ui —2u;+u;_
.,’yi_ I, .

an

If these expressions are inserted into eqn (7), then it
is possible, after some algebra, to arrive to the final
expression:

-

(12)

=1.T 1.7
Ly=3ciKnc +3¢]Kp 0

where the elements of the bending stiffness matrices
K, and K}, can be explicitly written down in terms of
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Fig. 2. Displacements and rotations of the rigid bars.
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the local stiffness coefficients k,; and k,,[1]. It is also
possible to prove that the matrices K, and K, have
half-bandwidth equal to 3.

2.2. De St Venant torsional strain energy

The torsional strain energy of the structure, due to
the uniform torsion, is given by:

41

1
Ly =§ Z kwil?

i=t

(12)

where y; is the relative torsional rotation between the
two faces of the ith cell, and &y, = C,/I,. It is:

n="%
=%=9_, i=2,...,¢ (13)
Xevr=—9
so that L, can be expressed as:
Ly =%cTKypcs. (14

K, is a typical three-diagonal matrix, whose elements
are given by:

KnGyi)=ky+hkyoy i=2,...,1
Kn(Gi+D)=knG+1,i)=—kyp1
Kn(, )=k,
Kn(t+1,t+1)=k,, ..

2.3. Viasov torsional strain energy

The torsional strain energy due to the non-uniform
torsion is given by:

L72=%:§ kziAZiz:ZchTKTZCJ (15
where:
Ap=xn="%
Apy=0—%i-1=%—-29,_,+9_,. (16)

The matrix K, can be calculated by inserting eqn (16)
into eqn (15), and the explicit formulae are given
in[1].
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Finally, the global stiffness matrix will be given by:

K, 0 0
0K, 0
0 0 Kn+Kp

K=

and it is a symmetric (3¢ + 3, 3¢ + 3) square matrix
with half-bandwidth equal to 3.

2.4. The boundary conditions

According to the general theory of the cell dis-
cretization method, the beam is supposed to be
constrained by elastically flexible springs, whose stiff-
ness can become very large, if classical perfect con-
straints must be simulated. This hypothesis does not
seem to imply any loss of generality, because large
stiffness coefficients never lead to numerical instabil-
ity, and because every real structural constraint ex-
hibits a (possibly small) flexibility.

In general, at each point of the beam it is possible
to associate three elastic external ‘axial’ springs, with
stifiness k., k,,, ks and three elastic ‘rotational’
springs, with stiffness k., ky,, kas. The following
non-dimensional coefficients can be conveniently
defined:

P I !
w gL Yoy =K o=k

Xox = k Ty
" EI, GI,

1 ! !
Xex=Kps=rs Xoy=kep=rs Xas=Kas =73 an
EI EI, Gl,

and a number of ‘perfect’ constraints can be simu-
lated by assigning ad hoc values to these coefficients.
For example, in Table 1 some torsional boundary
conditions are reported, where co means a large
numerical value.

3. THE KINETIC ENERGY
The kinetic energy of the beam can be written as:

+1

T =‘Tl,_ Z m[(y;+ yad P + G+ x93
(=1

1+1

1
+3 Y J92=1¢TM¢ (18)
i=]

Table 1. Some perfect constraints
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Supported along x and y
Supported

Flexurally clamped, torsionally free
Flexurally and torsionally clamped
Flexural sliding

Flexural and torsional sliding
Flexurally free, torsionally clamped
Flexurally free, torsionally sliding
Supported along y-axis
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Fig. 3. Simply supported beam with channel cross-section.

where J, is the rotatory inertia of the ith lumped
mass, and (x,;, y,;) are the coordinates of the shear
centre at the ith cell abscissa.

The Lagrangian mass matrix M will be a banded
(3t + 1, 3t + 1) square matrix, whose upper triangle
is given by:

M@GED=M@+1+it+1+i)=m,
i=1L2...,t+1

M@t +240,2t +2+i)=J,+ x2m, + yim,
i=1,2...,t+1
MG, 2 +2+i)=mx, i=1,2,...,t+1

i=1,2...,t+1
19)

M@+1+L2t4+240)=my,

4. THE EIGENVALUE PROBLEM

The Lagrangian equations lead immediately to the
well-known equations of motion of an undamped
unforced n-degree-of-freedom system:

Mé+Ke=0 (20)
along with the corresponding generalized eigenvalue
problem:

(—0*M + K)u =0. @n
Both the matrices have been shown to have a peculiar
highly-banded form, which greatly reduces the stor-

age space and the running time of any convenient
eigenvalue routine. All the numerical examples have

been solved by using the simultaneous iteration
method, as illustrated by Jennings and Corr [2], in
which the matrices are stored in variable bandwidth
form.

5. NUMERICAL COMPARISONS

As a first example, let us consider the single span
uniform beam in Fig. 3a, whose cross-section is given
in Fig. 3b. If the beam is simply supported at the
ends, then the first vibration frequency can be written
as[3]:

e (@ + w?) - \/(wf — o} +diwio?

21— ixg) > @)

where
wi=€’fj;g @3)
e o

In Table 2 the first vibration frequency is reported, as
obtained with different discretization meshes. It is
perhaps worth noting that the proposed approach
leads to a lower bound to the exact values, whereas
almost all the other approximate methods furnish
upper bounds.

If the same beam is supposed to be clamped at both
ends, then approximate solutions must be sought.
For example, an upper bound can be readily obtained
by using the well-known Rayleigh-Ritz method, with
trial functions:

v({)=CL*(1 -¢y (26)

8() =D -y, 2)]
where { is the non-dimensional abscissa.

The horizontal displacement #({) does not play a
role, because the shear centre is on the symmetry axis
of the section.

In Table 3 the first vibration frequency is reported,
as obtained from the Rayleigh-Ritz method and as
calculated with the authors’ approach.

Finally, let us suppose that the same beam is
clamped at its left end, while the right end is free
(cantilever beam).

Table 2. First free vibration frequency for the simply supported beam in Fig. 3. w% is the frequency given by the proposed
method, by dividing the beam into 30 rigid bars, w? is the exact Timoshenko value, w} is the pure bending value

o} ok ) ) ) d otn
696625 693961 695440 695958 696329 696458 696518
0.380 0.1701 0.0957 0.042 0.024 0.0154
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Table 3. First frec vibration frequency for the clamped—clamped beam

Rayleigh-Ritz
1st approx. w} o o w ok
3215799 2953980 3133454 3168827 3190395 3193562

In order to obtain an upper bound, two different
techniques were adopted. In the first one, a classical
Rayleigh-Ritz approach was used, with trial func-
tions:

0= CO+ GO+ G+ @8

SO =D+ D+ D+ (29
Three approximate values were obtained, by truncat-
ing the series after the first term, the second term and
the third term, respectively.

The second approach is somewhat less known,
even if it is—in the authors’ opinion—much more
powerful. Basically, it is a modified version of the
Rayleigh-Ritz method, which is referred to in the
literature as Rayleigh-Schmidt method [4, 5]. The
following trial functions are employed:

vO=CL+GL" (30)

8Q)=D,l*+ D" 2]
and the fundamental frequency w? = w*(n) is calcu-
lated. Then, the exponent value n is obtained by
minimizing the frequency with respect to it:

do?

T (32)
In Table 4 the first free vibration frequency is given,
as obtained from the Rayleigh—Ritz method, from the
Rayleigh~Schmidt method, and from the proposed
numerical method. The optimum » value is also
reported in brackets.

From this table it is possible to deduce that the
Rayleigh-Schmidt approach is quite effective, and
that the proposed cell procedure gives very useful
lower bounds.

Table 4. First free vibration frequency for the cantilever
beam

Rayleigh—Ritz184867
Ist approx.
Rayleigh-Ritz119494
2nd approx.
Rayleigh—Ritz116902
3rd approx.
Rayleigh-Schmidt 117691 (n = 2.53)
w},114904
04116356
03116630

w$ 116748

w3 116818

6. NUMERICAL EXAMPLES

The influence of the torsional effects on the free
vibration frequencies becomes less and less pro-
nounced for increasing values of the ratio (span of the
beam/height of the cross-section). In Table 5 the first
free frequency of a simply-supported beam with
channel section is given, for various values of the
ratio span/height, together with the pure bending

values:
, w*(EI
w*=—\—}
*\pA

All the numerical results have been obtained by
dividing the beam into 30 rigid bars.

In Table 6 the same results are given for the
cantilever beam and for the clamped—clamped beam.
From these tables it is simple to observe that the
influence of the torsional effects remains noticeable
even for long beams.

The influence of the constraints flexibilities is inves-
tigated by using the structural scheme in Fig. 1. The
rotational stiffness coefficients are allowed to vary
from 0 to a very high value, so that various limiting
cases can be recovered:

(33)

simply supported beam: w? = 695440;

clamped—clamped beam: w?*= 3164377,

simply supported in bending, clamped in torsion:
w?=1831893;

clamped in bending, simply supported in torsion:
w? = 809148.

It is quite clear, from this table, that the constraint
flexibility plays a fundamental role in the frequency
of thin-walled beams.

7. CONCLUSIONS

In this paper a recently developed discretization
method has been shown to give useful lower bounds
to the free bending-torsional vibration frequencies

Table 5. The influence of the ratio //A on the first frequency
for a simply supported beam

lh o} ok w}

0.6 4883710 4892394 23370478

1 695440 696625 3028814

3 15992 15915 37392

6 1655.18 1657.79 2336

9 388.92 389.58 461.6
15 56.000 56.100 59.828
60 0.2323 0.23274 0.2337
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Table 6. The influence of the ratio //h for a clamped—clamped beam and for a cantilever
beam
Clamped—clamped Cantilever
Uh o w? ) o}
0.6 23833851 1.2009 x 10% 709752 2965330
1 3168827 15563882 116630 384307
3 50544.7 192146.7 3056.66 4744.53
6 4971.093 12009.2 254.23 296.53
9 1341.75 2372.18 54.2824 58.574
15 234.386 30743 7.36435 7.59124
60 1.16645 1.2009 0.029547 0.029653

Table 7. The influence of the support flexibilities on the first free vibration frequency

k, 0 1 10 100 1000
kAo
0 695440 1714355 1819114 1830720 1831893
1 730888 1988043 2134402 2150843 2152507
10 788805 2562942 2821547 2851474 2854513
100 806942 2780370 3089301 3125427 3129101
1000 809148 2808065 3123666 3160619 3164377
of non-symmetrical thin-walled beams. A general REFERENCES

theory is sketched, which takes into account the
contribution of both the De St Venant torsion
and the non-uniform torsion; the presence of elasti-
cally flexible constraints and concentrated masses
can also be easily dealt with. A channel beam has
been used for numerical comparisons, in which the
method is shown to converge quickly to the true
results. Approximate, but accurate, upper bounds
have been obtained by using the Rayleigh-Ritz
method and the Rayleigh-Schmidt method. Finally,
the influence of the constraint flexibilities and of
the ratio span/height have been numerically investi-
gated.
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