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Let Ω be an open and bounded set in R2. The problem of interest is the following
initial-boundary-value problem:

∂u
∂t

(x, t) = f (x, t , u,∇u), x ∈ Ω, t ∈ R+,{
u(x, 0) = φ(x), x ∈ Ω,
u(x, t) = ψ(x, t), x ∈ ∂Ω, t ∈ R+.

Alternative problem

After integrating with respect to t on both sides, we reach the equivalent problem

u(x, t) = u(x, 0) +

∫ t

0
f (x, t , u,∇u)dt , x ∈ Ω, t ∈ R+,

u(x, t) = ψ(x, t), x ∈ ∂Ω, t ∈ R+,

which is a boundary-value problem.
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Nomenclature

Ω ⊂ Rn is open, bounded and connected.

α, β ∈ R such that α, β ≥ 1, and δ ∈ R satisfies 0 < δ � 1.

D : [0, 1)→ R is the function

D(u) = δ
uβ

(1− u)α
, ∀u ∈ [0, 1).

r : Ω× R+ → R is a continuous function such that 0 ≤ r < 1.

Model

u : Ω× R+ → R is a twice-differentiable function satisfying
∂u
∂t

= ∇ · (D(u)∇u) + ru, ∀(x, t) ∈ Ω× R+,

u(x, 0) = ϕ(x), ∀x ∈ Ω.
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Let F : [0, 1)→ R be defined by the expression

F (u) =

∫ u

0

vβ

(1− v)α
dv , ∀u ∈ [0, 1).

Theorem

Suppose that ϕ ≥ 0 is a function such that ϕ ∈ L∞(Ω), F (ϕ) ∈ H1
0 (Ω), and

‖ϕ‖L∞(Ω) < 1.

There exists a unique solution u satisfying:
1 u ∈ L∞(Ω× R+) ∩ C([0,∞), L2(Ω)).
2 F (u) ∈ L∞(R+,H1(Ω)) ∩ C([0,∞), L2(Ω)).
3 0 ≤ u(x, t) ≤ 1 for every (x, t) ∈ Ω× R+.
4 ‖u‖L∞(Ω×R+) < 1.
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Dimensional restriction

We will restrict our attention to the (2 + 1)-dimensional case.

Nomenclature

Ω = [a, b]× [c, d ] ⊂ R2, for a, b, c, d ∈ R such that a < b and c < d .

Fix uniform partitions

a = x0 < x1 < . . . < xm < . . . < xM = b,
c = y0 < y1 < . . . < yn < . . . < yN = d .

Fix a uniform partition 0 = t0 < t1 < . . . < tk < . . .

Let ∆x , ∆y and ∆t be the respective step-sizes, let uk
m,n ≈ u(xm, yn, tk ).

Define the finite-difference operators

δx uk
m,n =

uk
m+1,n − uk

m,n

∆x
, δy uk

m,n =
uk

m,n+1 − uk
m,n

∆y
, δt uk

m,n =
uk+1

m,n − uk
m,n

∆t
.
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Finite-difference scheme

δt uk
m,n = δx (D(uk

m−1,n)δx uk+1
m−1,n) + δy (D(uk

m,n−1)δy uk+1
m,n−1) + r k+1

m,n uk
m,n,

uk
m,0 − λuk

m,1 = 0, ∀m ∈ ZM ,

uk
m,N − µuk

m,N−1 = 0, ∀m ∈ ZM ,

uk
0,n − νuk

1,n = 0, ∀n ∈ ZN ,

uk
M,n − ξu

k
M−1,n = 0, ∀n ∈ ZN ,

uk
m,n = ϕ(xm, yn), ∀m ∈ ZM , ∀n ∈ ZN .

where

∇ · (D(u)∇u) ≈ δx (D(uk
m−1,n)δx uk+1

m−1,n) + δy (D(uk
m,n−1)δy uk+1

m,n−1).

r(xm, yn, tk+1)u(xm, yn, tk+1) ≈ r k+1
m,n uk

m,n, with r k+1
m,n = r(xm, yn, tk+1).

Boundary conditions

λ, µ, ν, ξ refer to (xm, a), (xm, b), (c, yn) and (d , yn), respectively.

Each constant = 0 in case of Dirichlet conditions, and = 1 in case of Neumann.
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Nomenclature

For every m ∈ ZM , n ∈ ZN and k ∈ Z+, let

ψk
m,n,z = −RzD(uk

m,n), z = x , y ,

φk
m,n = 1 + (Rx + Ry ) D(uk

m,n) + Rx D(uk
m−1,n) + Ry D(uk

m,n−1),

χk
m,n = 1 + r k+1

m,n ∆t ,

where
Rz =

∆t
(∆z)2

.

Implicit representation

For every m ∈ ZM , n ∈ ZN and k ∈ Z+:

ψk
m−1,n,x uk+1

m−1,n + ψk
m,n−1,y uk+1

m,n−1 + φk
m,nuk+1

m,n +

ψk
m,n,y uk+1

m,n+1 + ψk
m,n,x uk+1

m+1,n = χk
m,nuk

m,n.
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Stencil

Forward-difference stencil of the method around (xm, yn, tk ). The circles at time tk are
the known approximations, while those at time tk+1 are unknowns.
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Vector notation

Let uk be the vector of the approximate solution at the time tk , namely, let

uk = (uk
0,0, u

k
0,1, . . . , u

k
0,N , u

k
1,0, u

k
1,1, . . . , u

k
1,N , . . . , u

k
M,0, u

k
M,1, . . . , u

k
M,N ).

Let I be the identity matrix of size (N + 1)× (N + 1).

For every m ∈ ZM and every k ∈ Z+, let Bk
m be the matrix of the same size as I given

by

Bk
m =



0 0 0 · · · 0 0
0 χk

m,1 0 · · · 0 0
0 0 χk

m,2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · χk

m,N−1 0
0 0 0 · · · 0 0


.
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Let Bk be the matrix defined by blocks through

Bk =



0 0 0 · · · 0 0 0
0 Bk

1 0 · · · 0 0 0
0 0 Bk

2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · Bk
M−2 0 0

0 0 0 · · · 0 Bk
M−1 0

0 0 0 · · · 0 0 0


.

Remarks

Bk is a square matrix with (M + 1)(N + 1) rows.

Here, the symbol 0 in the definition of Bk represents the zero matrix of size
(N + 1)× (N + 1).
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In addition, for every m ∈ ZM and k ∈ Z+, we define the matrices Ak
m and Ck

m of sizes
(N + 1)× (N + 1) by

Ak
m =



1 −λ 0 · · · 0 0
ψk

m,0,y φk
m,1 ψk

m,1,y · · · 0 0
0 ψk

m,1,y φk
m,2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · φk
m,N−1 ψk

m,N−1,y
0 0 0 · · · −µ 1


,

Ck
m =



0 0 0 · · · 0 0
0 ψk

m,1,x 0 · · · 0 0
0 0 ψk

m,2,x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ψk

m,N−1,x 0
0 0 0 · · · 0 0


.
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For every k ∈ Z+, define the block matrix

Ak+1 =



I −νI 0 0 · · · 0 0 0
Ck

0 Ak+1
1 Ck

1 0 · · · 0 0 0
0 Ck

1 Ak+1
2 Ck

2 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · Ck

M−2 Ak+1
M−1 Ck

M−1
0 0 0 0 · · · 0 −ξI I


.

Method

The method is given by the recursive system of vector equations{
Ak+1uk+1 = Bk uk , ∀k ∈ Z+

,
u0 = u0.

Here, u0 represents the vector of initial approximations.

The vector equation is solved using the stabilized bi-conjugate gradient method.
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By an M-matrix we mean a square, real matrix A which satisfies all of the following:
1 The off-diagonal elements of A are non-positive numbers.
2 The diagonal entries of A are positive numbers.
3 A is strictly diagonally dominant.

Proposition

Every M-matrix is nonsingular, and all the entries of its inverse matrix are positive
numbers.

Definitions

We say that x > 0 if all its entries are positive numbers.

We use the notation x < 1 meaning that each of the components of this vector
are less than 1. Evidently, x < 1 if and only if e− x > 0, where e = (1, 1, . . . , 1).

The notation 0 < x < 1 represents the fact that x > 0 and x < 1.
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Lemma

Let k ∈ Z+, and suppose that 0 < uk < 1. Then Ak+1 is an M-matrix.

Proof.

Notice that the function D is positive in (0, 1). Therefore, the off-diagonal elements of
Ak+1 are non-positive, and its diagonal elements are positive. The fact that this matrix
is strictly diagonally dominant is immediate, also.

Proposition

Let ϕ and r be nonnegative functions such that ϕ < 1. For each k ∈ Z+, let (∆t)k be
the temporal step-size in the k th iteration. If 0 ≥ u0 < 1 and the inequality

r k
m,nuk

m,n(∆t)k < 1− uk
m,n

is satisfied for every m ∈ ZM , n ∈ ZN and k ∈ Z+, then 0 < uk < 1.
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Proof (positivity).

The conclusion is obviously true when k = 0. Suppose that 0 < uk < 1, for some
k ∈ Z+. By the lemma, Ak+1 is an M-matrix. By hypothesis, χk

m,n is positive for every
m ∈ ZM and n ∈ ZN . Consequently, Bk uk is a positive vector, whence
uk+1 = (Ak+1)−1Bk uk is likewise positive.

Proof (boundedness).

Let wk+1 = e− uk+1. A substitution in the vector form of the method yields

Ak+1wk+1 = bk+1,

where bk+1 = Ak+1e− Bk uk . The first and the last N + 1 rows of bk+1, as well as
those labeled m(N + 1) + 1 and (m + 1)(N + 1) are nonnegative for every m ∈ ZM ;
the components of the remaining rows are of the form 1− (1 + (∆t)k r k

m,n)uk
m,n, for

suitable m ∈ ZM and n ∈ ZN , and the positivity of these components follows by
hypothesis. The fact that wk+1 is positive follows as a result from the fact the Ak+1 is
an M-matrix, whence uk+1 < 1. The result is readily established by induction.
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One-dimensional example

Two simulations of biofilm growth with δ = 1× 10−4, α = β = 2, r = 0.15.
Computationally, ∆x = 0.005, ∆t = 0.025.
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Two-dimensional example

Simulation of biofilm growth with δ = 1× 10−4, α = β = 2, r = 0.12, at the times
t = 0, 8, 10, 11, 12, 13. Computationally, ∆x = ∆y = 0.025, ∆t = 0.05.
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Two-dimensional example

Simulation of biofilm growth with δ = 1× 10−4, α = β = 2, r = 0.09, at the times
t = 7, 9, 11, 13. Computationally, ∆x = ∆y = 0.025, ∆t = 0.05. The initial profile was
nonzero at 10 random points (with random heights) on the left boundary.
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A complex model
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Nomenclature

Ω ⊂ Rn is open, bounded and connected.

α, β ∈ R such that α, β ≥ 1, and d1, d2 ∈ R satisfy 0 < d1 � 1 and 0 < d2 � 1.
K1, K2, K3 and K4 are nonnegative constants.

D : [0, 1)→ R is the function

D(u) =
uβ

(1− u)α
, ∀u ∈ [0, 1).

Model

u, s : Ω× R+ → R are twice-differentiable functions satisfying

∂s
∂t

(x, t) = d1∇2s(x, t)− K1
s(x, t)u(x, t)
K4 + s(x, t)

,

∂u
∂t

(x, t) = d2∇ · (D(u(x, t)∇u(x, t))− K2u + K3
s(x, t)u(x, t)
K4 + s(x, t)

.

s(x, t) = 1, u(x, t) = 0, ∀x ∈ ∂Ω, ∀t ≥ 0,
s(x, 0) = s0(x), u(x, 0) = u0(x), ∀x ∈ Ω,
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Let F : [0, 1)→ R be defined by the expression

F (u) =

∫ u

0

vβ

(1− v)α
dv , ∀u ∈ [0, 1).

Theorem

Let s0 and u0 satisfy the following conditions:

s0 ∈ L∞(Ω) ∩ H1(Ω) and 0 ≤ s0(x) ≤ 1 for every x ∈ Ω,

u0 ∈ L∞(Ω) and F (uo) ∈ H1
0 (Ω),

u0(x) ≥ 0 for every x ∈ Ω, and ‖u0‖L∞(Ω) < 1.

Then, there exists a unique solution of our problem satisfying the following properties:
1 s, u ∈ L∞(Ω× R+) ∩ C(L2(Ω), [0,∞)),
2 s,F (u) ∈ L∞(H1(Ω),R+) ∩ C(L2(Ω), [0,∞)),
3 0 ≤ s(x, t), u(x, t) ≤ 1 for every (x, t) ∈ Ω× R+, and ‖u‖L∞(Ω×R+) < 1.
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Dimensional restriction

We will restrict our attention to the (2 + 1)-dimensional case.

Nomenclature

Ω = [a, b]× [c, d ] ⊂ R2, for a, b, c, d ∈ R such that a < b and c < d .

Fix uniform partitions

a = x0 < x1 < . . . < xm < . . . < xM = b,
c = y0 < y1 < . . . < yn < . . . < yN = d .

Fix a uniform partition 0 = t0 < t1 < . . . < tk < . . . of [0,∞).

Let ∆x , ∆y and ∆t be the respective step-sizes, let

uk
m,n ≈ u(xm, yn, tk ),

sk
m,n ≈ s(xm, yn, tk ).
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Nonstandard finite diferences

Define the operators

ε±x uk
m,n = D(µ±x uk

m,n)δ±x uk+1
m,n , ε±y uk

m,n = D(µ±y uk
m,n)δ±y uk+1

m,n ,

εx uk
m,n =

ε+
x uk

m,n + ε−x uk
m,n

∆x
, εy uk

m,n =
ε+

y uk
m,n + ε−y uk

m,n

∆y
.

Numerical method

δ+
t sk

m,n = d1(δ
(2)
x + δ

(2)
y )sk+1

m,n − K1
uk

m,nsk+1
m,n

K4 + sk
m,n

,

δ+
t uk

m,n = d2(εx + εy )uk
m,n − K2uk+1

m,n + K3
sk

m,nuk+1
m,n

K4 + sk
m,n

,

sk
m,0 = sk

m,N = sk
0,n = sk

M,n = 1,
uk

m,0 = uk
m,N = uk

0,n = uk
M,n = 0,

s0
m,n = s0(xm, yn), u0

m,n = u0(xm, yn).
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For every m ∈ ZM , n ∈ ZN and k ∈ Z+, let

φk
m,n = 1 + 2R(1)

x + 2R(1)
y + K1∆t

uk
m,n

K4 + sk
m,n

,

ψk,±
m,n,z = R(2)

z D(µ±z uk
m,n),

χk
m,n = 1 +

∑
z=x,y

(
ψk,+

m,n,z + ψk,−
m,n,z

)
+ K2∆t − K3∆t

sk
m,n

K4 + sk
m,n

,

R(i)
z = di

∆t
(∆z)2

, i ∈ {1, 2}, z = x , y .

Implicit representation


−R(1)

x sk+1
m−1,n − R(1)

y sk+1
m,n−1 + φk

m,nsk+1
m,n − R(1)

y sk+1
m,n+1 − R(1)

x sk+1
m+1,n = sk+1

m,n ,

ψk
m−1,n,x uk+1

m−1,n + ψk
m,n−1,y uk+1

m,n−1 + φk
m,nuk+1

m,n +

ψk
m,n,y uk+1

m,n+1 + ψk
m,n,x uk+1

m+1,n = χk
m,nuk

m,n.
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Vector notation

Let vk be the juxtaposition of the vectors

sk = (sk
0,0, s

k
0,1, . . . , s

k
0,N , s

k
1,0, s

k
1,1, . . . , s

k
1,N , . . . , s

k
M,0, s

k
M,1, . . . , s

k
M,N ),

uk = (uk
0,0, u

k
0,1, . . . , u

k
0,N , u

k
1,0, u

k
1,1, . . . , u

k
1,N , . . . , u

k
M,0, u

k
M,1, . . . , u

k
M,N ).

Similarly, let vk
0 be the juxtaposition of

tk = (1, 1, . . . , 1︸ ︷︷ ︸
N + 1 entries

, 1, sk
1,1, . . . , s

k
1,N−1, 1︸ ︷︷ ︸

N + 1 entries

, . . .

. . . , 1, sk
M−1,1, . . . , s

k
M−1,N−1, 1︸ ︷︷ ︸

N + 1 entries

, 1, 1, . . . , 1︸ ︷︷ ︸
N + 1 entries

)

wk = (0, 0, . . . , 0︸ ︷︷ ︸
N + 1 entries

, 0, uk
1,1, . . . , u

k
1,N−1, 0︸ ︷︷ ︸

N + 1 entries

, . . .

. . . , 0, uk
M−1,1, . . . , u

k
M−1,N−1, 0︸ ︷︷ ︸

N + 1 entries

, 0, 0, . . . , 0︸ ︷︷ ︸
N + 1 entries

).
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Let I represent the identity matrix of size (N + 1)× (N + 1). For every m ∈ ZM and
every k ∈ Z+, let

C =



0 0 0 · · · 0 0
0 −R(1)

x 0 · · · 0 0
0 0 −R(1)

x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −R(1)

x 0
0 0 0 · · · 0 0


,

Ek
m =



1 0 0 0 · · · 0 0 0
−R(1)

y φk
m,1 −R(1)

y 0 · · · 0 0 0

0 −R(1)
y φk

m,2 −R(1)
y · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · −R(1)
y φk

m,N−1 −R(1)
y

0 0 0 0 · · · 0 0 1


.
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Define next the square matrix Ak as the block matrix given by

Ak =



I 0 0 0 · · · 0 0 0
C Ek

1 C 0 · · · 0 0 0
0 C Ek

2 C · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · C Ek

M−1 C
0 0 0 0 · · · 0 0 I


.

Remarks

Let k ∈ {0, 1, . . . ,K}.

1. The off-diagonal elements of Ak are non-positive numbers: 0, −R(1)
x or −R(1)

y .

2. If all the numbers uk
m,n and sk

m,n are non-negative, then the diagonal entries of Ak

are either equal to 1 or equal to some φk
m,n. In either case, the entry is positive.

3. Ak is strictly diagonally dominant when 2 above is satisfied.
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For every m ∈ ZM and every k ∈ Z+, let

F k,±
m,z =



0 0 0 · · · 0 0
0 −ψk,±

m,1,z 0 · · · 0 0
0 0 −ψk,±

m,2,z · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −ψk,±

m,N−1,z 0
0 0 0 · · · 0 0


,

Gk
m =



1 0 0 · · · 0 0
−ψk,−

m,1,y χk
m,1 −ψk,+

m,1,y · · · 0 0

0 −ψk,−
m,2,y χk

m,2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · χk

m,N−1 −ψk,+
m,N−1,y

0 0 0 · · · 0 1


.
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Define next the square matrix Bk as the block matrix given by

Bk =



I 0 0 0 · · · 0 0 0
F k,−

1,x Gk
1 F k,+

1,x 0 · · · 0 0 0
0 F k,−

2,x Gk
2 F k,+

2,x · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · F k,−

M−1,x Gk
M−1 F k,+

M−1,x
0 0 0 0 · · · 0 0 I


.

Remarks

1. The off-diagonal entries of Bk are non-positive, being −ψk,±
m,n,z for z = x , y , or 0.

2. Let K3∆t < 1 + K2∆t . The diagonal entries of Bk are 1 or equal to some

χk
m,n ≥ 1 + K2∆t − K3∆t

sk
m,n

K4 + sk
m,n
≥ 1 + K2∆t − K3∆t > 0.

3. Finally, if the hypothesis of 2 holds then Bk is strictly diagonally dominant.
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Define the block matrix Mk of size [2(M + 1)(N + 1)]× [2(M + 1)(N + 1)] through

Mk =

(
Ak 0
0 Bk

)
,

where the zeros represent zero matrices of sizes (M + 1)(N + 1)× (M + 1)(N + 1).

Method

The method is given by the recursive system of vector equations

Mk vk+1 = vk
0 ,

Here, v0 is just the vector of discrete, initial conditions.

The technique proposed in this work is clearly implicit and linear.

The vector equation is solved using the stabilized bi-conjugate gradient method.
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By an M-matrix we mean a square, real matrix A which satisfies all of the following:
1 The off-diagonal elements of A are non-positive numbers.
2 The diagonal entries of A are positive numbers.
3 A is strictly diagonally dominant.

Proposition

Every M-matrix is nonsingular, and all the entries of its inverse matrix are positive
numbers.

Definitions

We say that x > 0 (resp. x ≥ 0) if all its entries are positive (resp. non-negative)
numbers.

We use the notation x < 1 (resp. x ≤ 1) meaning that each of the components of
this vector are less than (resp. less than or equal to) 1.

The notation 0 < x < 1 represents the fact that x > 0 and x < 1. Other
statements involving the other inequality symbols have analogous meanings.
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Lemma

Let k ∈ {0, 1, . . . ,K} and vk ≥ 0. If K3∆t < 1 + K2∆t then Mk is an M-matrix.

Proposition

Let s0 ≥ 0 and 0 ≤ u0 < 1. If K3∆t < 1 + K2∆t then vk ≥ 0, for every k ≥ 0.
Moreover, every vk is positive if v0 > 0.

Proof.

The vector v0 is non-negative by hypotheses. Suppose that vk is also non-negative for
some k ∈ {0, 1, . . . ,K − 1}. The lemma guarantees that Mk is an M-matrix, so all the
entries of its inverse are positive numbers. Observe also that vk inherits the
non-negativity to vk

0 , whence we conclude that vk+1 = (Mk )−1vk
0 is a non-negative

vector. The last statement of the proposition is analogous.
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Proposition

Let 0 ≤ vk ≤ 1 for some k ∈ {0, 1, . . . ,K − 1}. If 1 + K2∆t − K3∆t − uk
m,n > 0 holds

for every m ∈ {1, . . . ,M − 1} and n ∈ {1, . . . ,N − 1}, then 0 ≤ vk+1 ≤ 1.

Proof.

Observe firstly that K3∆t < 1 + K2∆t is satisfied under these hypotheses. Define

xk+1 = e− vk+1,

where e is the vector of the same dimension as vk+1, all of whose components are
equal to 1. In terms of x, our method is rewritten as Mk xk+1 = bk , where

bk = Mk e− vk
0 .

The conditions in the hypothesis guarantee that the vector bk is non-negative. So, xk+1

is also non-negative or, equivalently, vk+1 ≤ 1.
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Constant substrate

Simulation of biofilm growth with Ω = [0, 1]× [0, 1], d1 = K1 = K2 = K4 = 0,
d2 = 0.0001, K3 = 0.4, α = β = 4; ∆x = ∆y = 0.02 and ∆t = 0.01.
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Variable substrate

Simulation of biofilm growth with Ω = [0, 1]× [0, 1], d1 = 0.002, d2 = 0.0001,
K1 = 0.85, K2 = 0.0012, K3 = 0.4, K4 = 0.3, α = β = 4; ∆x = ∆y = 0.02 and
∆t = 0.01.
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Variable substrate

Simulation of biofilm growth with Ω = [0, 1]× [0, 1], d1 = 0.0015, d2 = 0.0001,
K1 = 0.65, K2 = 0.36, K3 = 0.2, K4 = 0.3, α = β = 4; ∆x = ∆y = 0.02 and
∆t = 0.01.
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A nonlinear model
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Preliminaries Boundedness Monotonicity and convergence

Problem 
∂u
∂t
− αup ∂u

∂x
−
∂2u
∂x2
− f (u) = 0,

u(x , 0) = u0(x),

where
f (u) = u(1− up).

Nomenclature

u : R× R+ → R is twice differentiable, and u = u(x , t).

Physically, x represents position and t denotes time.

α ∈ R is the advection/convection coefficient.

p ∈ R satisfies p ≥ 1.
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The following are known exact solutions.

Burgers-Fisher

u(x , t) =

(
1
2

+
1
2

tanh
[
−αp

2(p + 1)

(
x −

(
α

p + 1
+

p + 1
α

)
t
)])1/p

.

Burgers-Fisher with p = 2, and α = 0 (Newell-Whitehead-Segel)

u(x , t) =
C1 exp( 1√

2
x)− C2 exp(− 1√

2
x)

C1 exp( 1√
2

x) + C2 exp(− 1√
2

x) + C3 exp(− 3
2 t)

, C1,C2,C3 ∈ R.

Remarks

The first solutions is a traveling-wave front connecting u = 0 and u = 1.

There are existence-and-uniqueness theorems that guarantee the the presence
of traveling-wave solutions, but very few solutions known in exact form.
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Conventions

Fix a spatial domain D = [a, b] ⊂ R.

Fix uniform partitions and partition norms:

a = x0 < x1 < . . . < xN = b, ∆x = (b − a)/N.
0 = t0 < t1 < . . . < tk < . . . <∞, ∆t > 0.

Let uk
n represent an approximation to u(xn, tk ).

Define the linear operators

δt uk
n =

uk+1
n − uk

n

∆t
.

δ
(1)
x uk

n =
uk

n+1 − uk
n−1

2∆x
.

δ
(2)
x uk

n =
uk

n+1 − 2uk
n + uk

n−1

(∆x)2
.
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Orders of consistency

ut = δt uk
n +O(∆t).

ux = δ
(1)
x uk

n +O((∆x)2).

uxx = δ
(2)
x uk

n +O((∆x)2).

Finite-difference scheme

δt uk
n − α(uk+1

n )pδ
(1)
x uk

n − δ
(2)
x uk

n − f (uk+1
n ) = 0, ∀n ∈ {1, . . . ,N − 1},

such that


u0

n = u0(xn), ∀n ∈ {1, . . . ,N − 1},
uk

0 = φ(tk ), ∀k ∈ Z+,

uk
N = ψ(tk ), ∀k ∈ Z+.

u0 is the exact solution at t = 0.

φ, ψ : [0,∞)→ R are the Dirichlet boundary conditions on D (exact solution for
us).
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Conventions

The k th approximation is denoted by uk = (uk
0 , u

k
1 , . . . , u

k
N ).

Introduce the constants r = 0.5∆t/∆x and R = ∆t/(∆x)2.

Let

ak
n = αr(uk

n+1 − uk
n−1),

bk
n = Ruk

n+1 + (1− 2R)uk
n + Ruk

n−1.

Equivalent formulation

The method may be rewritten as Fn,k (uk+1
n ) = 0 for every n and k , where

Fn,k (u) = (∆t)up+1 − ak
nup + (1−∆t)u − bk

n .

Note: Thus, uk+1
n represents geometrically a root of the function Fn,k .

J. E. Macı́as-Dı́az Universidad Autónoma de Aguascalientes

LINEAR FINITE-DIFFERENCE DISCRETIZATIONS THAT PRESERVE POSITIVITY AND BOUNDEDNESS



Preliminaries Boundedness Monotonicity and convergence

Lemma

Suppose that 2R < 1.

(A) If uk is positive, then Fn,k (0) < 0 for every n.

(B) If |α|r < R and uk < 1, then Fn,k (1) > 0, for every n.

(C) If p is even, |α|r < R and uk > −1, then Fn,k (−1) < 0, for every n.

Proof.

Observe that |α|r < R if and only if R + αr > 0 and R − αr > 0.

(A) The conclusion follows from the facts that bk
n is positive and Fn,k (0) = −bk

n .

(B) After some calculations and using the fact that uk < 1, we obtain that
Fn,k (1) = 1− (R + αr)uk

n+1 − (1− 2R)uk
n − (R − αr)uk

n−1 > 0.

(C) In this case, Fn,k (−1) = −1− (R + αr)uk
n+1 − (1− 2R)uk

n − (R − αr)uk
n−1,

which is negative.
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Lemma

Suppose that 2R < 1 and |α|r < R.

(A) If 0 < uk < 1, then Fn,k has a root in (0, 1), for every n.

(B) If p is an even number and −1 < uk < 1, then Fn,k has a root in (−1, 1), for
every n.

Proof.

The proof is an immediate consequence of the continuity of each of the functions Fn,k ,
the Intermediate Value Theorem and the previous lemma.

Remark

This result proposes conditions under which uk+1 will be bounded within (0, 1) or
within (−1, 1) when uk is bounded within the same interval.
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Proposition

Suppose 2R < 1, and |α|r < R.

(A) Let 0 < u0 < 1. For every k , if uk
0 , u

k
N ∈ (0, 1) then 0 < uk < 1.

(B) Let p be an even number and −1 < uk < 1. For every k , if uk
0 , u

k
N ∈ (−1, 1) then

−1 < uk < 1.

Proof.

The proof is immediate.

Remarks

The condition |α|r < R holds if and only if |α|∆x < 2.

The conditions of the proposition assure that each Fn,k has roots within (0, 1)
and (−1, 1); however, they do not guarantee the uniqueness.

To show uniqueness, it is enough to guarantee that each Fn,k is increasing.
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Lemma

(A) If uk ∈ (0, 1) and ∆t + |α|rp < 1, then Fn,k is increasing in (0, 1).

(B) If p is even, uk ∈ (−1, 1), ∆t + 2|α|rp < 1, then Fn,k is increasing in (−1, 1).

Proof.

Suppose (A) or (B). Then F ′n,k (u) ≥ −|α||uk
n+1 − uk

n−1|rp + 1−∆t .
(A) F ′n,k (u) ≥ −|α|rp + 1−∆t > 0, for every u ∈ (0, 1).
(B) F ′n,k (u) ≥ −2|α|rp + 1−∆t > 0, for each u ∈ (−1, 1).

Proposition

Let 2R < 1, and |α|r < R.

(A) Let 0 < u0 < 1, ∆t + |α|rp < 1, and uk
0 , u

k
N ∈ (0, 1). There exists a unique

sequence {uk}∞k=0 bounded within (0, 1).

(B) Let p be even, −1 < u0 < 1 and ∆t + 2|α|rp < 1. Suppose that
uk

0 , u
k
N ∈ (−1, 1). There exists a unique {uk}∞k=0 bounded within (−1, 1).
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A method is monotonicity-preserving if for data u0 < v0, then uk < vk for every k .

Lemma

Let 2R < 1 and |α|r < R. The method is monotonicity-preserving if either

(A) u0 and the boundary data lie within I = (0, 1) and ∆t + |α|rp < 1, or

(B) u0 and the boundary data lie within I = (−1, 1), p is even and ∆t + 2|α|rp < 1.

Proof.

By proposition, {uk}∞k=0, {v
k}∞k=0 ⊂ I. Let uk < vk and let wk

n = vk
n − uk

n ∈ R+. Let

ck
n = αr(vk

n+1 − vk
n−1), dk

n = Rvk
n+1 + (1− 2R)vk

n + Rvk
n−1.

Each vk+1
n is the root of Gn,k (v) = (∆t)vp+1 − ck

n vp + (1−∆t)v − dk
n in I. Let

Hn,k : I → R be given by Hn,k = Gn,k − Fn,k . It is readily checked that

Hn,k (w) = −(R + αrwp)wk
n+1 − (1− 2R)wk

n − (R − αrwp)wk
n−1 < 0,

for every w ∈ I. So Gn,k < Fn,k over I, whence uk+1
n < vk+1

n follows.
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A method is temporally increasing (resp. decreasing) if uk < uk+1 (resp. uk > uk+1) is
satisfied for every k whenever u0 < u1 (resp. u0 > u1)holds. A method which is
temporally increasing and decreasing is temporally monotone.

Proposition

Let 2R < 1, and |α|r < R. The method is temporally monotone if either

(A) the initial and boundary conditions lie within I = (0, 1) and ∆t + |α|rp < 1, or

(B) the initial and boundary conditions lie within I = (−1, 1), p is an even integer and
∆t + 2|α|rp < 1.

Proof.

Suppose that u0 < u1 belong to I, and that the numbers uk
0 , u

k+1
0 , uk

N , u
k+1
N ∈ I satisfy

the inequalities uk
0 < uk+1

0 y uk
N < uk+1

N , for each k . If we let vk = uk+1 for each k , the
previous lemma implies that uk < vk for each k . It follows that the method is temporally
increasing. The fact that the method is temporally decreasing is proved analogously.
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A vector x = (x0, x1, . . . , xN ) is spatially increasing (resp. decreasing) when xn < xn+1
(resp. xn > xn+1) is satisfied for every n. A method is spatially increasing (resp.
decreasing) if, for every spatially increasing (resp. decreasing) initial profile, the
successive approximations are spatially increasing (resp. decreasing). A spatially
increasing and decreasing method is called spatially monotone.

Proposition

Let 2R < 1, and |α|r < R. The method is spatially monotone if either

(A) the initial and boundary data lie within I = (0, 1) and ∆t + |α|rp < 1, or

(B) the initial and boundary data lie within I = (−1, 1), p is even and ∆t + 2|α|rp < 1.

Proof.

Let u0 be spatially increasing, and suppose that uk
0 < uk

1 < uk
N−1 < uk

N , for every k .
Let vk = (uk

0 , u
k
1 , . . . , u

k
N−1) and wk = (uk

1 , u
k
2 , . . . , u

k
N ). Evidently, v0 < w0, and

vk
0 < wk

0 and vk
N−1 < wk

N−1 hold for every k . We conclude by the lemma that vk < wk ,
for every k . Equivalently, each vector uk is spatially increasing.
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The following is a discrete form of the well-known Gronwall’s inequality.

Lemma

Let K > 1, and suppose that A, B and Ck are nonnegative constants for each
k ∈ {0, 1, . . . ,K}. If (A + B)∆t ≤ K−1

2K and if {wk}K
k=0 satisfies

wk − wk−1 ≤ A∆twk + B∆twk−1 + Ck ∆t , for each k = 1, . . . ,K then

max
1≤k≤K

∣∣∣wk
∣∣∣ ≤ (w0 + ∆t

K∑
l=1

Cl

)
e2(A+B)T .

We define now the vectors

zk = (zk
0 , z

k
1 , . . . , z

k
K ),

uk = (uk
0 , u

k
1 , . . . , u

k
K ),

for each k = 0, 1, . . . ,K . Here, for every n ∈ {0, 1, . . . ,N}, we let uk
n = u(xn, tk ), and

zk
n is the corresponding numerical approximation.
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Proposition

Suppose that the following inequalities hold:

(C1) ∆t − 2
∆t

(∆x)2
< 1,

(C2)
1

2∆x
|α| <

∆t
(∆x)2

,

(C3) p
(
|α|

∆t
2∆x

)
< 1.

Assume that the function u ∈ C4,2
x,t ([a, b]× [0,T ]) is a positive solution of the

continuous problem such that ‖u‖∞ < 1. Then there exists a constant C̃ ∈ R+ which
is independent of ∆t and ∆x , and there exists exactly one solution z of the
finite-difference method which converges to u, and that satisfies

max
0≤k≤K

∥∥∥uk − zk
∥∥∥
∞
≤ C̃(∆t + (∆x)2).
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Feasibility of conditions

The first and third conditions of the proposition may be equivalently restated as
the inequalities

(C′1)
(

1− 2
(∆x)2

)
∆t < 1,

(C′3) p
(
|α|

2∆x

)
∆t < 1

respectively, which are satisfied for sufficiently small values of ∆t .

The second condition of our main result is equivalent to the inequality

(C′2)
1
2
|α|∆x < ∆t ,

which is valid for sufficiently small values of the computational parameter ∆x .
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