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ON THE PROPAGATION OF LIGHT IN CRYSTALLIZED
MEDIA,

IN a former paper ® I endeavoured to determiuve in what way
a plans wave would he modifiel when transmirted from one
non-cryatallized medium to another; founding the investizntion
on this principle: In whatever manner the elements of any
materisl system may act upen each other, if all the inveral
torces be multiplied hy the elements of their respective divections,
the total sums for any assigned portion of the mass will always
be the egact differential of some function. This principle re-
quires a slight limitation, and when the necessary limitation is
introduced, appears to posseas very great generality, I shall
here endeavour to apply the same principle to crystallized bodies,
and shall likewise introduce the consideration of the effects of
extraneous pressures, which liad been omitted in the former
communication. Qur problem thus besomes very complicated,
as the function due to the internal forces, even when there are
no extrancous pressnves, contains twenty-one coefficients. But
with these preasures we are obliged to introduce six additional
cneflicicnts; so that without some limitation, it appears quite
hopeless thence to deduce any consequences which could have
the least chance of a physical application. The absolute neces-
sity of introducing somo arbitrary restrictions, and the desire
that their number should be as small as possible, induced me
to examine how far our function would be limited by confining
ourselves to the consideration of those media only in which the
directions of the transverse vibrations shall always be accurately
in the front of the wave. Thia fundamental principle of
Fresnel's Theory gives fourteen relations between the twenty-
one constants originally entering into our function; and it seems
worthy of remark, that when there are no extraneous pressures,
the directions of polarization and the wave-velocities given by
our theory, when thus limited, are identical with those assigned
by Fresncl's general construction for biexal crystals; provided
we supposs the actual divection of disturbance in the particles

* Bupra, p. 243.
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of the medium is purallel to the plave of polarization, agveeably
w the supposition first advanced Ly M. Cauchy.

1f we admit the existence of eatrancous pressures, it will
be neceasary in addition to the single restriction Lefors noticed,
to suppuse that for three plane waves parallel to three orthogonal
agctions of our medium, and which may bo denominated prineipal
sections, the wave-velocities shall Le the same for any two of
the three waves whose fronts are pasallel to these sections, pro-
vided the direction of the corresponding disturbanzes are paraliel
to the lino of their intersection. With this additional sup-
position, the divections of the actual disturbances by which aug
plane wave will propagste itself without subdivision, and the
wave-valocities, agree exactly with those given by Frexnel, supe
posing, with him, that these directions are perpendivular o the
plans of polarization. The last, or Fresnel's hypothesis, was
adopted in our former paper. But as that paper relates merely
to the intensities of the wayes reflected and refiacted as the
surface of separation of two yaedin, and as thess intensities
msy depend upon physical circumstances, the consideration of
which was not introduced mto our former investigations, it
seows sight, in the present paper, considering the ectual situa-
tion of the theory of light, when the yartial differential equations
on which the determination of the motion of the luminiferous
ether depends are yet to discover, to state fairly the results of
both hypotheses,

It is hoped the analysis employed on the present occasion
will be found sufifciently simple as a method has here been
given of passing immediately and withont caleulation from the
funetion due to the internal forces of our medium to the equation
of an ellipsoidal surface, of which the semi-axes represent in
magnitude the reciprocals of the thres wave-velocitics, and in
direction the'directionn of the three corresponding distarbances
by which a wave can propagate itself in one medium without
subdivision. This surface, which may be properly styled the
ellipsoid of elasticify, must not be confounded with the one
whose section by a plane parallel to the wave's front gives the
veciprocals of the wave-velocities, and the corresponding direc-
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tions of polarization. The two suriaces have only this section
in common ¥, and & very simple application of our theory would
shew that no force perpendioular to the wave's front is rejected,
as in the ordinary one, bat that the force in question is abso-
lutely nuil+.

Lut ns conceive a system composed of an immonse number
of particles mutuelly acting on each other, and moreover sub-
jeoted to the influence of extrancous pressures. Then if x, y, s
are the co-ordinates of any particle of this systemn in ite primi.
tive state, (that of equilibrium under pressvre for example), the
co-ordinates of the same particle at the end of the time ¢ will
become &, y', &', where &, ¥, o ave functions of 2,y, s and ¢,
If now wo congider an element of this modium, of which the
primitive form is that of a rectangular parallelopiped, whose
sides aro dz, dy, dz, this element in its new state will assnme
the form of an oblique-angled parallelopiped, the lengths of the
three edges being (dz), (dy’), (d2"), these edges hoing composed
of the same particles which formed the thres edges dz, dy, dz
in the primitive state of tho element. Then will

() e {(h)J,(d{) +(% ')}cwuacw’
(A= {f‘“’) () +(5o) o =vay  soppose.

o 4 -

Again. let

J
amcost(,a,)

W Ay e
Zrds Yl T &

AR ARE K (‘”)' @}

¥ (1t will be séuns that this remark i nob otrlotly sorreot, as the surfece must
nocsssarily have another common plane seotion, )

4+ [Refarving to the values of u, v, v given iu p. 301, we see that, since the
direction of vibration is supposed to be in the front of the wave, we have

au+dvscwe=o.

Bot tha force perpendicular to the wave's front is a "—'}‘-+ b 1’; - ::;’, which {s

oqual to e8(au + bv+ ¢it), and is therefore null.]
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LedyTdz iyt i &y

'. )E(‘%)’-:-(ﬁ)’ﬂ{ 2:}2(%;,;’).‘} \(?y ),},

i abeq= T2 4 A Iy s
A=y daTdyde Ty &
ol dod dy'dy | &' dif
Bmah= e e i ds Yo B

o dd & dy dy v dd
v--ah=a@+£@+a§@.

or we may write

Suppose now, as in a former paper, that pdedydz is the
function due to the mutual actions of the particles which com-
poss the element whose primitive volume = dzdydz.  Since ¢
must remain the snwe, when the sides (i), (dy'), (de) and the
cosines g, 3,  of the angles of the elementary oblique-angled
parallelopiped remain unchanged, its most general form must be

¢ = function (g, b. ¢, 4, 8, v),

or since a, b, and ¢ are necessarily positive, also
o« =bea, B =acB, avd 4 =aly,

W6 may Write d=Fla" U, & e, By o)eceininnneiannnn(1).

This expression is the equivalent of the one immediately
preceding, and is hers adopted for the sake of introducing
greater symmetry into our formule, '

We will in the firat place suppose that ¢ is symmetrical
with regard to threo planes at right angles to each other, which
we shall take as the co-ordinate planes. The condition of sym-
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metry with vespeot to the plane (y2), will require ¢ to remain
unchanged, when we change

(oo

z) .,
o INtO
zJ -

But thus @, ¥, ¢ and 2’ evidently remain unaltered; morcover

g -8
‘7,} become {_‘ Y.

Hence we get
¢=’.f (“’» b, ¢, d", -8 7'.)'

Applying the like reasoning to the other co-ordinate planes,
we see that the ultimate result will be

$=rfa' 1, & o BN i (2).

The forcgoing values are perfectly general, whatever the
disturbance may be; but if we consider this disturbance as very
small, we may make

Z =u+u,
y=y+v,
2 =5 410,

u, v, and w being very swall functions of w, y, 2, and ¢ of the
fixst order. Then by substitution we get

1+3%+ (g") +C§:)

B=14 2 (Z;) + (dy) + (J;) =148, } suppose...(8),

o () + () + (%) =140, |

, dv rlw du du dy d’v dw dw
uzdz dy d_/dz dydz dy dz’

dw du du +dv de dwdw
B = dz d.r+¢td’ d:cdz+dr dz '

((}?) =1+, |

= 1+2
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'wdi‘ ; dudu+dv dv+dwdw
LA Zc' ‘dedy ™ dndy” drdy’

we thus scc that s, 8, 8, €, B, o, are very smail quaxtities of
the first order, and that the geueral formula (1) by substituting
the preceding valugs would take the form

¢ = function (s,, 8,, 5,, «, 8, 9),
which may be expanded in a very convergent saries of the form

=yt ¢+ Pyt b+ &o.:

Gos Pu» Py &e. boing homogeneons fanctions of &, &, 8, ', £, 7,
of the degrees 0, 1, 8, 8, &o. each of which is very great com-
pared with the next following one.

But ¢, beinz constant, if o = the primitive density of the
elewnent, the general formula of Dynamics will give

[y { s G 804 5 ol = [ sty Bpurde).

If there were no extraneous pressures, the supposition that
the primitive state was one of equilibrium would require ¢,=0,
as was observed in a former paper; but this is not the case if
we introduce the consideration of exfranecus pressures. How-
ever, as in the firat case, the terms ¢, ¢,, &e. will be insensible
and the preceding formula may be written

[[[odnayas .-.-su+§;,’so+ b ew} [f dnduds (5,454,).

Bapposing p the primitive density constant, the mest general
form of ¢, will be

= % (As, + Be,+ Co,+2Dd’ ¥ 2EE + 3FY),
4, B, 0, D, E, and I being constant quantities.

Tn like manner the most general form of ¢, will contain
twenty-one coefficients. But if we first employ the more parti-
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culyr value (2, we shall get
— 20 = As + B, + (%,
w2, = Gu} 4 Ie) 4 I 4 2Pss, + 2 ¢s.8,+ 21is.8,
+ Lu"* 4+ HB? + No?,

Or by substitating for #,, 4,, ,, 4, B, 4 their values, given
by system (3), continuing to neglect quantities of the third
order, we get

-2 24, ~ 29,

du dy &
& +2de+26

rafl) + (@) + G}
ol )+ )

e Y, (d:)' +( %{f)’}

=24

'z,

10" dy dw dudw dudv
+G(da;’ +}I( y) +I(d +e PR QT F R T

+b(gi+) +H G+ 5) +¥ (G4 5) -0

Having thus the form of the fanction due to the internal
actious of tho particles, we have metely to subatitute it in the
goneral formula of Dynamics, and to efiect the integrationa by
parts, agreeably to the method of Lagrange. Thus,
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If now in our indefinitely extended medium we wish to
determine the laws of propagation of plaue waves, we must
take, to satisfy the lust equetions,

u = of (ax -+ by + s + ef),

v = ff (ac 4 by + ez + et),

w =f it by -Feztet);
a, b, and ¢ being the cosines uf the angles which a normal to
the wave's front mokes with the co-ordinate axes, a, B, v con-

stant coefficients, and e the velocity of transmissivn of & wave
perpendicular to its own front, and taken with a contrury sign,

Substituting thess values in the equations (5), and making
to abridge
A=(G+A)d+(N+B)5+(M+ ) o,
Bw(N+d)o+(H+DB)P+(L+C),
C=(M+d)a'+(L+B)0+T + )

D' = (L + Pjbe.
L'=(M+ @) ac,
F'=(N+R)ab;
we get 0=(4"—pc’) 2+ FR+Fy
0=Fa + (B —p") B+ Dy ...(8).
O0=Fa +Vg +(0'~pe)y

Theso Jast equations will serve to determine three vulues of
p" and three corresponding ratios of the quantities g, B, #; and
hence we know the directions of the disturbance by which a
plane wave will propagate itself without subdivision, and also
the corvesponding velogities of propagation. From the form of
the equations (6), it is well known, that if we conceive an
ellipsoid whose equation is

1=4'2"+ By + C¢ + 2D'ys 4 2B ws + 2 Fay®......(7),

* 1f we roflect on the connexion of the operations by which wa pass from the
function (4) to the cquation (%), it will be easy to perceive that the right side of the
eyuation (7) may always be immediately deduced from that portion of the function
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and reprezent its three semi-axes hy ¢, #°, and ¢, the directions
of theso axes will be the required directions of the disturbance,
and the corresponding volocities of propagation will be given by

P a

Fresnsl supposcs those vibrations of the particles of the
luminiferous ether which aflect the eye, to be accurately in the
front of the wave,

Let ns thereiore investigate the relation which must exist
betwoen our coefficients, in order to satisfy this condition for
two vut of onr three waves, the remaining one in consequence
being necensarlly propagated by normal vibrations

For this we may remark, that the equation of a plane
paraliel to the wave's front is
O=ad + 3y’ + ce'o.....(a)
If therefore we make
e +-ad\,
y=y+o,
=4 4o\,

and substitute these values in the equation (1) of the ellipsoid;
testoring the values of

A" ‘B” 0’} U’ E'i F’
*he odd powers of A ought to disappear in conscquence of the
equation /), whatever may be the position of the wave's front.

We thus get
G H=I=p sppose,

and Pe=p~-21,
Q=u-2M,
R=p~3N.

which is of the second degres, by changing u, v, and w lalo 2, g, sud & Also

;5, %mﬂ%hbqb,c.

This remark will be of use to us nflerwards, when wo coms to consder the
most general forot of the funetion due to the internal actions,
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In faet, if we sulstitute thesc values in the fanction (4),
there will result

~20p= 24, - 2¢,
uBAa*‘QB?'P?G%

+al() @)+ (@)}
+B {(%) ( ) \@)’}
+o{(z) + @)+

)
(dB"'z;"'dTw)

vL {(gf *T)""% dw}

iy [7dy  dw\* | dudw
+0{(G+ %) 155}
( du dv\'  du dv}
+N 1( -4y T
which, when 0= 4, 0=2B, 0= (, reduces to the last four lines.
Making the same substitution in the equation (7), we got

L= g (a4 by + co)?
+ (da*+ Bb* 4 OF) (&' + 5 +2°) } verees(8)s
+ L (cy — be)* 4+ M (az — ea)* + N (be ~ ay)*

Letus in the first place anppose the system free from all
extraneons pressure.

Then 4=0, B=0, 0=0,

and the above equation, combined with that of a plans parallel
to the wave’s front, will give

Oz + Y +68.icinviirnririinnsarn (9),
1=z L (cy— be)* + M (o& — cx)*+ N (B2 ~ ay)",
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the equations of au infinite number of ellipses which, in gencral,
do not belong to the same cwve surfice. If, however, wo
cause cach ellipsis to turu 90° in its own plane, the whole rystem
will belong to an ellipsoid, as may be thus shewn: Let (cyz) be
the co-ordinates of any poiut p in its original position, and
(z'y'%) the co-ordinates of the poiut p' which would coincide
with p whan the ellipsis is tnrned 90° in its own plane. T'hen
B4y 4 =ty 40,
since the distance from tue origin 0 is unaltered,

0=ax’ + by + cf, since the plane is the same,
0=z +yy + oo, vince pOp = 90",

"The two last equations give

4 = y . = 1 suppose,
cy—be az—co bz —ay

ience the last of the equations (9) becomes
o' = Laf* + My + N,
But
@ 4yt + 2% = 0t (oy ~ B9)" + (02 — o} + (b2 — ay)?)
=o' {("+0) 21 (" +aT) ' + (B + ") o' ~ 2 (fcys + abuy + acxz)
=o' {{a'+ 8+ ) (Z + 5 + ) = (az + by + ez}
=0'(@+y' +8) =+ 3"+ 2"
Therefors o’=1,
and our equation finally becomes
1= La*+ My* + Ns*.......covvevinnns(10).

We thus see that if we conceive a section made in tho
ellipsoid to which the equation (10) belongs, by a plane passing
through its centre and parallel to the wave's front, this section,
when turned 80 degrees in its own plane, will coincide with a
similar scction of the ellipsoid to which the equation (8) belongs,
and which gives the directions of the disturbance that will canse
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o plane wave to propagate itself without subdivision, and the
velocity of propagation purallel to its own front. The change
of position here made m the elliptical section, is eviden
equivalent to supposing the actual disturbanees of the etherenl
particles to be paraliel to the plane nsually denominated the
plare of polarization.

This hypothesis, at first advaneed by M. Cauchy, hus sines
been adopted Ly several philusophers ; and it seeras worthy of
cemarit, that if we suppose un clastic mediura free from all
extrangous pressare, we have merely to suppose it go constituted
that two of the wave-distarbances shall be accurately in the
wave's front, sgrceably to Freenel's fundamental hypothesis,
thence to deduce his general construction for the propagation of
waves in biaxal crystals, In fact, we shall afterwards prove
that the function ¢, which in its mont general form contains
twenty-one coedficients, i3, in consequence of this hypothesis,
seduced to one containing only seven coeflicients; and that, from
this last form of our function, we obtwin for the directions of
the disturbance and velocities of propagation precisely the same
values as given by Fresnel's c: nstruction.

The above supposes, that in a state of equilibrium every
part of the mediem is quite free from presswre. When this is
not the case, 4, B, and ' will no longer vanish in the equation
(8). In the first place, conceive the plane of the wave’s front
parallel to the plune (ye); thena=1, 3 =0, ¢ = 0, and the cqua-
tion (8) of our ellipsoid becomes

Vo=pa' s AR 43" 4 2%+ M+ NP
end that of a section by a plane through its centre purallel to
the wave's front, will be
1=(A+N)y'+ (44 M) 2
and hence, by what precedes, the velocities of propagation of
our {wo polarized waves will be
JA+N. The disturbance being parallel to the axis of y,

JA‘*‘A[. bUviwv e AL L R AT X T X XN R NI RIS S P e to the axis ofz.

20
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Similarly, it the plone of the wave’s fromt is parallel to the
plaue (xz), the wave.velocities are

JB+ & The disturbance being paralle! to the axis v,

—— s

Or if the plana of the wave's front Is parallel to (2y), the
velocities are

JU+ M The disturbance being parallel to e,
Jﬁ';_.z':n ----------------------------------------- ys

Fresnel supposes that the wave-velocity depends on the
direction of the disturbance only, and is independent of the
position of the wave's front. lnstead of assuming this to be

generally true, let us merely suppose it holds good for these
three principal waves, Then we shall have

N+ A=C+L, M+Ad=B+L, and B4+ N=C + M;
0y we may write
A-L=B<M=0w-N=y (suppose).
Thus cur equation {(8) becowmes since o + 6" 4 ¢?=1,
1=p{ae+by+es)’+vit+y v 2)
4 (La* 4+ M8 + NS (2 + '+ &)
+ L ey - bz)'+ M (a2 = cx)' + N (bx - ay).
But the two last lines of this formula essily reduce to
(M+N)2+(N+ L)+ (L+ M) F
+ L{a*? — {by+ c2Y'} + M {B'y* ~ (ax 02}
+ N ("¢ — (an+ by)').
And hence our last equation becotes
1=+ M+ Ny + v+ N+ L)y + v+ L+ M) 2 4p jax + by 4-c2)?
+ L{a’s® ~ (by + ¢2)'} + M (B~ (ox 4 cz)'l +N {c’z - (d.t + b)y)‘}
. ..(1

Tn consequence of the condition w!uch was sansﬁd in
forming the cquation (8), it is evident that two of its semi-axes

crerennses 10 the axis z.
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ara in a plane parallel to the wave's froni, and of which the
equation is

0=aB4 Sy 4 €2 cvvnnnnninnnirnnnnnn. (19);
the same therafore will be true for the ellipsoid whose equation
is (11), as this is only a particnlar case of the former, But the
section of the last ellipsoid by the plane (12) is evidently given by

‘B’_U‘l":"'*‘hr):t"{"(y'}'[, {-N)y‘.{.(y.*,L,PM):t} (12 .
O=azr-t by + cz (12, 1)

By what precedes, the two axes of this elliptica! section will
‘give the two directions of disturbance which will cause a wave
to be propagated without subdivision, and the velocity of pro-
pagation of each wave will be inversely as the eorreaponding
semi-axes of the section: which agrees with Fresnel’s con-
struction, supposing, as he has done. the actual direction of the
disturbance of the particles of the ether is perpendicular to the
plane of polarization.

Liet us again consider the system as quite free from extra-
fieous pressure and take the most general value of ¢, conteining
twenty-one coeflicients.  Then, if to abridge, we make

du du du
=6 dy™ =4
we shall have
¢ =E)ESH )+ Q)P 2l b+ 2EDE+ 2 &
+ (@) &+ () B'+ (o} ¥4 2(B) By + 2 (av) ay +2 (aB) 0B
t2@f)ab+ 208k BE+2(vO) ok
+2 (an) an+ 2 (Bn) By + 2 (yy) yn
“+2(ab) el +2(80) AL + 2 (vh) 4t
where (§), (a¥), &e are the twenty-one coeflicients which enter
into ¢, Sappose now the equation to the front of a wave is
O=azx+dy4ez
W—8.
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Then, by what was before observed, the right side of the
equalion of the ellipssid, which gives the directions of dis
turbance of the three polurized waves and their respective

velocities. will be had from ¢, by changiog v, », aud w into
@,y and o; also

d d d .
de U’ and g, o g, b, and q.

We shall fhus get

Ledd + By + C'4 2Dys + 2802+ 2Fzy.
Provided
A=(E)a"+ ()¢ + (4 & + 2 (G) b 4 2 (£8) ac + 2 (&) o
Ba()¥ 4 () o + () a* + 2 'ay) ac 4 2 () Be + 2 () ad,
C=({) '+ (@ 5+ (B a*+2 (a8) ab 4 2 'ta) Be + 2 (¢8) a0,
D= 58} bo + (0% b + ‘By) o+ (13, a0 + ‘ary) b

+ (a9 B+ (af) o + (3n] @b + (v acy

E=(%) a0+ (5 ac + lary) 6" + (43) Bo + {3 b

+(BE) &'+ (85) & + (ak) &b + (y¥) b,
Fo(E)ab + (Y)ab 4 a8\ 4 (ay) be 4 By ac

+OE o4 (o) B+ (af) ac-+ 184) bo,

But if the directions of twp of the
in ths fromt of a wave,

through the centrs of the

distarbances are rigorously
a plane parailel w this front passing
ellipsaid, and whose equation is

0 =oar+ byt e,

maust contain two of the semi-axes of this ellipsoid: and there-

fore a syatem of chordz perpendioniar to the plane will be
biseoled by it, and hence we get

0={d - Cuc+ E{¢" —a%) 4 Fbe — Dab,
0={B~C)be + D ¢~ + Fac - Eab.
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Substituting in these the values of A, B, &e., hefore given,
we shall obtain the fourteen rclutions following between the
cocfficicnts of ¢,, viz.

0 = (ayj, 0=(BE), O=[F), 0=w@f), 0=(3L), 0={ym),
(af) = —287), (A w—2{an) (4f)=—2({aB)
() = (o) o= () = 2 (a®) + (nd) =248+ (§}) =2 (P + (£n).
Hence, we may readily put the function ¢, under the follow-
ing form,
(€ ) E+n+ O+ (o) (@ = dnb) + (B8 — ) + ) (v~ 4m)
+3 (8y) By - 20f) +9 (2y) (ay ~ 33} +2 (a) (2B — 2)s

or by restoring the values of &, o, &c., snd making G = (§),
L = (@, &e., our function will become

du
(/l.r Jy tfz) +

L {({Iu du® | dvdw) MI rdu IIU') 4dudw} +N §idu rlo‘)' dudy)

utay) gt et a@n) e Y Wiy el T dedy)

ap (AU de\ | dude  dw\)

+2P: l( i dz} (dy + a’.'r) ® de (dz +31_);
dwi du  dv\ | dv rdu | dw

+JQ{(& dy) dy+dv) JJ \dz "J.u)}

((dn tlw\ (Ju dw> _dw (Ju A r{9)

*2”1(17 dy/ \de * i) > Ay d.rr
and hence we get for the equation of the corresponding elipsoid,
== U (az+ by + e2)f + L (hs ~ ¢y’ + M {uz - cx)’ + N (ay —bx)’
+ 3P (ex - as) (ay - bx) + 2Q (s ~ cy) (ay — Vo) + 2B (b2 — cy) (c2x — az)...(13}

But if in equation (8) and corvesponding function (41, we
suppose 4 =0, B=0, and =0, and then refer the equation to
axes taken arbitrarily in space, we shall thus introduce three
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new coeflicients, and evidently obtain a result equivalent to
equation (18) and function (12). We thercfore ses that the
single supposition of the wave-disturbance, being always accu-
rately in the wave's front, leads to a resalt equivalent to that
given by the former process; and we are thus sssured that by
employing the simpler method we do not, in the case in guestion,
eventually leasen the generality of our result, but merly, in
effect. select the three rectangular axes, which may be called
the axes of elasticity of the medium, for our co-ordinate axes.
From the general form of ¢, it is clear that the zame ohservation
applies to it, and therefore the consequences befsre deduced
possess all the requisite generality,

The same conclusions may be obtained, whether we intro-
duce the considerativn of extraneous pressures or not, hy direct
calculation. 1In fact, when these pressures vanish, and we con-
ceive a section of the ellipsoid whoso equation is (13), made hy
a plane parallel (o the wavet front, to turn 90 degrees in its own

plane the same reasoning oy which equation (10) was before
found, inmediately gives, in the present case,

1=La™ + My*+ Ne* 4 2Bys 4+ 202’7 + 2R5y ... 14),

for the equation of the surface in which all the elliptical sections

in their new situations, and corvesponding to every position of
the wave's front, will be found,

Lastly, whén we introduce the consideration of extraneous
pressares, it is clesr, froma what precedes, that we shall merely
have to add to the function on the right side of the equation
(18), the quantity

(Ad’ 4 B8 + Cc* + 3Dbo + 2Fac + 2Fab) (& + * + o),

which would arise from changing #, v, and w into @, y, and ¢,
d d d 1) + + .
Also o' dy d&s mto a, b, ¢; in that part of ¢ which is of
the second degree in u, v, w, agceeably to the remark in &
foregoing nole. Afterwards. when we determine the values of
A, B, &, by the same condition which enabled us to deduce



IN CRYSTALLIZED MEDIA, 3l

the system (19, 1}. we shall have, in the place of this system,
the following :

b= K (e y2’) ~ { D28+ My*+ Ne'+ 2FPyz+2Qr: + 2R xy) } 15)
V=ar + by ¢cx e

which is applicable to the more general case just considered ¥

* Vide Professor Stokes' Repirt on Double Refraction (British Assoclalion,
1862, p- 165). ‘



