CAPITOLO VII

FLESSIONE COMPOSTA

1. La sollecitazione di flessione composta come sovrapposizione di due flessioni semplici e di una trazione (o compressione) semplice.

La sollecitazione composta di due flessioni semplici e di una trazione (o compressione) semplice prende il nome di flessione composta, di tensoflessione (o pressoflessione), o anche di trazione (o compressione) eccentrica.

Le sollecitazioni esterne agenti sulla base $z=\ell$ ammettono come sole caratteristiche diverse da zero $\mathcal{M}_x^{\iota}=\mathcal{M}_x$, $\mathcal{M}_y^{\iota}=\mathcal{M}_y$, ed $F_z^{\iota}=F_z$ (*). Le coppie possono comporsi in una coppia \mathcal{M} agente in un piano ortogonale a quello della base. La sollecitazione risulta così dalla coesistenza di una flessione deviata e di una trazione (o compressione); il piano in cui agisce la coppia è il piano di sollecitazione, la sua traccia s sul piano della base è l'asse di sollecitazione.

La coppia ${\mathfrak M}$ e la forza F_z possono ancora comporsi in un'unica forza F_z diretta secondo l'asse z, agente nel piano di sollecitazione ad una distanza

$$e = \frac{\mathfrak{M}}{F_z} \tag{1}$$

dall'asse z (fig. 7-1). Il punto C in cui questa forza incontra il piano della base si chiama centro di sollecitazione; il punto C si trova sull'asse s, e dista dalla retta m baricentrica della lunghezza fornita dalla (7-1); tale lunghezza si chiama eccentricità.

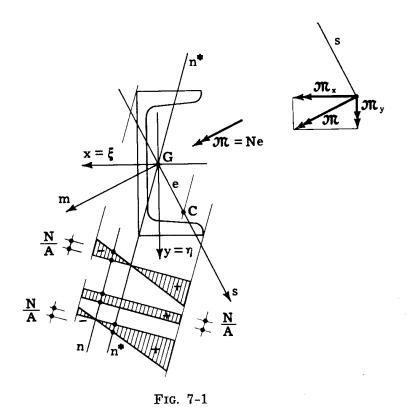
Il segno del secondo membro della (7-1) si giustifica per la convenzione sulla distanza fatta nel Cap. I; fissato il verso di m, ad $\mathfrak{M}>0$ ed $F_z>0$ corrisponde e>0, e così per gli altri casi.

Le sollecitazioni sulla base z=0 ammettono come sole caratteristiche diverse da zero $\mathfrak{M}^o{}_x{=}{-}$ \mathfrak{M}_x , $\mathfrak{M}^o{}_y{=}{-}$ \mathfrak{M}_y , $F^o{}_z{=}{-}$ F_z ; anche esse

^(*) Si ricordi che $\mathbf{F}_{\mathbf{z}}$ coincide in valore e segno con la caratteristica di sforzo normale.

possono comporsi in un'unica forza — F_z , uguale e contraria alla forza F_z agente sulla base $z=\ell$.

Le caratteristiche della sollecitazione interna in corrispondenza della generica sezione retta si riducono alle N, M_x , M_y , uguali alle corrispondenti caratteristiche della sollecitazione esterna agente sulla base $z=\ell$;



le forze interne elementari sulla generica sezione retta hanno per risultante quindi una forza N parallela all'asse z e ad una distanza da quest'ultimo pari all'eccentricità.

Può scriversi, per il principio di sovrapposizione,

$$\sigma_{z} = \frac{N}{A} + \frac{M_{x}}{I_{x}} y - \frac{M_{y}}{I_{y}} x. \qquad (a)$$

La (a) assicura che gli estremi dei vettori σ_z giacciono su un piano; la retta n, intersezione di questo piano con quello della sezione retta, luogo dei punti ove $\sigma_z = 0$, si chiama asse neutro. Le tensioni lungo ogni corda parallela all'asse neutro sono costanti, e risultano proporzionali alla distanza d_n della corda da esso. L'equazione dell'asse neutro è

$$\frac{N}{-A} + \frac{M_x}{I_x} \; y - \frac{M_y}{I_v} \; x = 0 \; . \label{eq:fitting}$$

Chiamando e_x ed e_y le coordinate del centro di sollecitazione secondo gli assi x ed y (fig. 7-2) si ha

$$M_x = Ne_v$$
 ; $M_v = -Ne_x$;

chiamando ρ_x e ρ_y i raggi principali d'inerzia, distesi su y ed x, forniti dal-

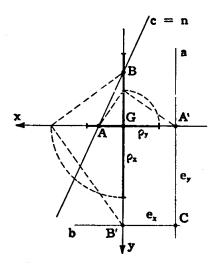


Fig. 7-2

le note relazioni

$$I_x = \rho^2_{\,x}\,A \quad ; \quad I_y = \rho^2_{\,y}\,A$$

la (a) si scrive

$$\sigma_z = \frac{N}{A} \left(\frac{e_y}{\rho_x^2} y + \frac{e_x}{\rho_y^2} x + 1 \right). \tag{b}$$

L'equazione dell'asse neutro è perciò la seguente

$$1+\frac{e_y}{\rho^2_x}y+\frac{e_x}{\rho^2_y}x=0$$

I due punti A e B in cui l'asse n incontra gli assi x ed y hanno le coordinate

$$A\left(-\frac{\rho^2_y}{e_x}, 0\right) \quad ; \quad B\left(0, -\frac{\rho^2_x}{e_y}\right).$$

Si riconosce così (fig. 1-25) che C è il centro relativo alla retta c.

* FRANCIOSI - Vol. II

Di questa proprietà può darsi anche una dimostrazione sintetica. Le forze elementari σ_z dA devono ammettere per risultante una forza N normale al piano della sezione retta e applicata in C (fig. 7-1); poichè σ_z è proporzionale alla distanza d_n dall'asse neutro, se ne trae che il baricentro delle masse d_n dA, e cioè il centro relativo alla retta c, coincide con C.

Dalla suddetta corrispondenza tra C ed n discende che n (fig. 7-3) è secante, tangente od esterno alla sezione retta secondo che C è esterno, sul contorno, od interno rispetto al nocciolo centrale d'inerzia della sezione

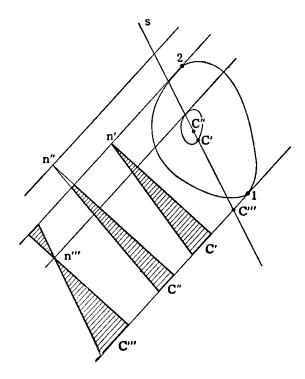


Fig. 7-3

retta (§ 1-11); nel primo caso la sezione è divisa dall'asse n in due parti ove le tensioni σ_z sono di segno opposto, negli altri due casi le tensioni sono tutte dello stesso segno.

2. Formule binomie.

Il diagramma delle σ_z (fig. 7-1) risulta dalla sovrapposizione di quello relativo alla flessione deviata di momento M=Ne, e di quello relativo alla trazione (o compressione) N. Si può perciò scrivere la σ_z sotto la forma binomia

$$\sigma_z = \frac{N}{A} + \frac{M_n}{I_{n^*}} d_{n^*}$$
 (2)

$$\sigma_z = \frac{N}{A} + \frac{M}{I'_{n^*}} d'_{n^*}$$
 (2')

avendo indicato con \mathbf{d}_{n^*} e $\mathbf{d'}_{n^*}$ le distanze dell'area elementare dA dall'asse n* baricentrico parallelo all'asse neutro, valutate normalmente ad n* o parallelamente ad s, e con \mathbf{I}_{n^*} e $\mathbf{I'}_{n^*}$ i momenti d'inerzia della sezione retta rispetto ad n*, valutati attraverso le distanze \mathbf{d}_{n^*} e $\mathbf{d'}_{n^*}$.

Le (2) e (2') si scrivono pure

$$\sigma_{z} = \frac{N}{A} + \frac{Nd_{Cn^{\star}}}{I_{n^{\star}}} d_{n^{\star}}$$
 (3)

$$\sigma_{\rm z} = \frac{\rm N}{\rm A} + \frac{\rm Ne}{\rm I'_{n^\star}} \, d'_{n^\star} \,, \qquad (3')$$

avendo indicato con d_{Cn^*} la distanza del centro di sollecitazione dall'asse n^* , valutata normalmente ad n^* .

3. Formule monomie.

Si è già osservato che su ogni corda parallela all'asse neutro la tensione è costante, e proporzionale alla distanza d_n della corda da esso. In corrispondenza del baricentro, e quindi lungo tutto l'asse n* baricentrico parallelo all'asse neutro, si ottiene (dalla (a), per x = y = 0) $\sigma_z = N/A = \sigma_m$ (tensione media).

Si può scrivere (fig. 7-4), dopo avere orientato n,

$$\sigma_z = \sigma_1 d_n$$
 (c)

ove σ_i è la tensione relativa alla corda distante $d_n\!=\!1$ da n. La condizione di equivalenza relativa alle forze secondo z è

$$\int_A \sigma_z \; dA = \sigma_1 \int_A d_n \; dA = \sigma_1 \; S_n = N$$

avendo indicato con S_n il momento statico della sezione retta rispetto all'asse neutro; si ha perciò

$$\sigma_z = \frac{N}{S_n} d_n .$$
(4)

La (7-4) può anche ottenersi dal triangolo delle tensioni; chiaman-

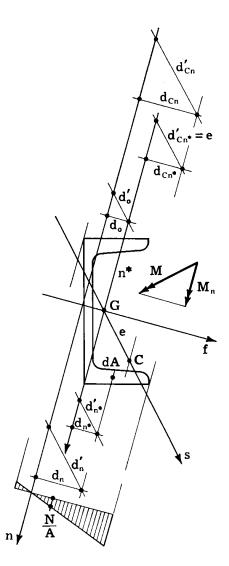


Fig. 7-4

do do la distanza di G da n, si ha (fig. 7-4)

$$\frac{N}{A}:\sigma_z=d_o:d_n$$

da cui

$$\sigma_{z} = \frac{N}{A} \frac{d_{n}}{d_{o}} ; \qquad (5)$$

la (7-5) coincide con la (7-4), perchè A $d_{\scriptscriptstyle 0}$ è il momento statico $S_{\scriptscriptstyle n}\,.$

Moltiplicando numeratore e denominatore delle (7-4) e (7-5) per $\cos \widehat{sf}$, si ha (form. 1-6)

$$\sigma_{z} = \frac{N}{S'} d'_{n} \qquad (4')$$

$$\sigma_{z} = \frac{N}{A} \frac{d'}{d'_{0}}; \qquad (5')$$

S' è il momento statico della sezione retta rispetto all'asse neutro n, valutato attraverso le distanze d'_n .

La condizione di equivalenza relativa ai momenti intorno all'asse neutro si scrive

$$\int_{A} \sigma_{z} \ d_{n} \ dA = Nd_{Cn}$$

da cui

$$\sigma_1 \int_A d^2_n \ dA = \sigma_1 \ I_n = Nd_{Cn}$$

e ancora

$$\sigma_{z} = \frac{Nd_{Cn}}{I_{n}} d_{n}$$
 (6)

con l'analoga (form. 1-6)

$$\sigma_{z} = \frac{Nd'_{Cn}}{I'_{n}} d'_{n} . \qquad (6')$$

La lunghezza d_{Cn} (d'_{Cn}) è la distanza del centro C di sollecitazione dall'asse neutro, ed I_n (I'_n) il momento d'inerzia della sezione rispetto all'asse neutro; la (7-6) ha lo stesso aspetto della formula di Navier.

La condizione di equivalenza relativa ai momenti intorno all'asse n* fornisce

$$\int_A \sigma_z \ d_{n^*} \ dA = \operatorname{Nd}_{\operatorname{Cn}^*}$$

da cui

$$\sigma_1 \int_A d_n d_{n^*} dA = Nd_{Cn^*}$$

$$\sigma_1 I_{n^*} = Nd_{Cn^*}$$

$$\sigma_{z} = \frac{Nd_{Cn^{*}}}{I_{n^{*}}} d_{n}$$
 (7)

ed analoga

$$\sigma_{z} = \frac{Ne}{I'_{n^{*}}} d'_{n} , \qquad (7')$$

dove e è la distanza di C da n*, valutata secondo s, cioè il segmento CG. Dalle (7-6) e (7-7) si ricava

$$\frac{d_{Cn}}{I_n} = \frac{d_{Cn^*}}{I_{n^*}}.$$
 (8)

4. Momenti di nocciolo.

Si faccia riferimento alla generica sezione retta, e si orienti la retta m (e quindi n ed n*).

Le forze σ_z dA sono equivalenti, come già detto, ad una forza N applicata in C (fig. 7-5); siano E_1 ed E_2 i due punti in cui il contorno del nocciolo è tagliato dall'asse di sollecitazione CG. Può anche dirsi che le forze σ_z dA sono equivalenti ad una forza N applicata in E_1 e ad una coppia M_{c1} agente nel piano di sollecitazione

$$M_{c\scriptscriptstyle 1} = N \cdot CE_{\scriptscriptstyle 1} = N \cdot d_{\scriptscriptstyle 1}$$

pari in valore e segno al momento di N applicato in C rispetto ad E_1 . Siano 1 e 2 i due punti della sezione più distanti dall'asse neutro, punti di tangenza delle tangenti n_1 ed n_2 rispettivamente antipolari di E_1 e di E_2 . Le tensioni σ_z sono somma di quelle provocate da N agente in E_1 , e di quelle provocate da M_{c1} . Alla forza N è connesso un diagramma di σ_z che si annulla in 1, essendo n_1 l'antipolare di E_1 ; perciò la σ_z in 1 è dovuta solo alla coppia M_{c1} , e si calcola attraverso le formule (6-6) della flessione deviata; poichè n* lascia 1 alla sua sinistra (§ 6-3), è

$$\sigma_{z1} = \frac{M_{c1}}{W'_{1n}} = \frac{M_{c1}}{A n_1}.$$
 (9)

In maniera perfettamente analoga si ottiene

$$\sigma_{z2} = -\frac{M_{c2}}{W'_{zn}} = -\frac{M_{c2}}{A n_{z}}.$$
 (10)

Nelle (7-9) e (7-10) n_1 ed n_2 sono presi in valore assoluto.

I momenti M_{c1} M_{c2} prendono nome di momenti di nocciolo. Se il centro C giace su uno dei due assi principali della sezione, le σ_z estreme si calcolano, utilizzando i momenti di nocciolo, con la formula di Navier.

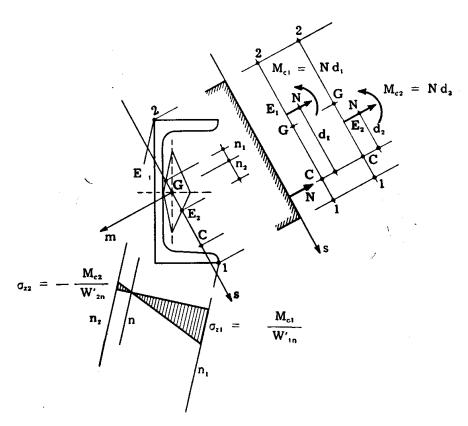


Fig. 7-5

I momenti di nocciolo forniscono soltanto i valori estremi di σ_z . Si osservi che se C giace sul contorno del nocciolo (per es. se $C=E_2$) è $d_2=0,\ M_{c2}=0,\ \sigma_{z2}=0$; se C è esterno al nocciolo, M_{c1} ed M_{c2} sono dello stesso segno, e σ_{z1} , σ_{z2} di segno opposto; se C è interno al nocciolo, M_{c1} ed M_{c2} sono di segno opposto, e σ_{z1} , σ_{z2} dello stesso segno.

Dalle (7-9) e (7-10) si deducono le condizioni di sicurezza (il punto 1 è alla sinistra di n*)

in 1)
$$\frac{M_{c1}}{W'_{1n}} \leqslant \sigma_{at} \ (M_{c1} > 0) \ ; \ \frac{|M_{c1}|}{W'_{1n}} \leqslant |\sigma_{ac}| \ (M_{c1} < 0)$$

$$(11)$$
 in 2)
$$\frac{|M_{c2}|}{W'_{cn}} \leqslant \sigma_{at} \ (M_{c2} < 0) \ ; \ \frac{M_{c2}}{W'_{cn}} \leqslant |\sigma_{ac}| \ (M_{c2} > 0) \ .$$

Dalle (7-11) si trae che per effettuare la verifica di resistenza in corrispondenza di una sezione presso-inflessa appartenente ad una generica struttura è necessario calcolare relativamente a quella sezione i massimi valori positivi e negativi dei due momenti di nocciolo $M_{\rm c1}$ $M_{\rm c2}$; si giustifica così la costruzione delle linee d'influenza dei momenti di nocciolo che si

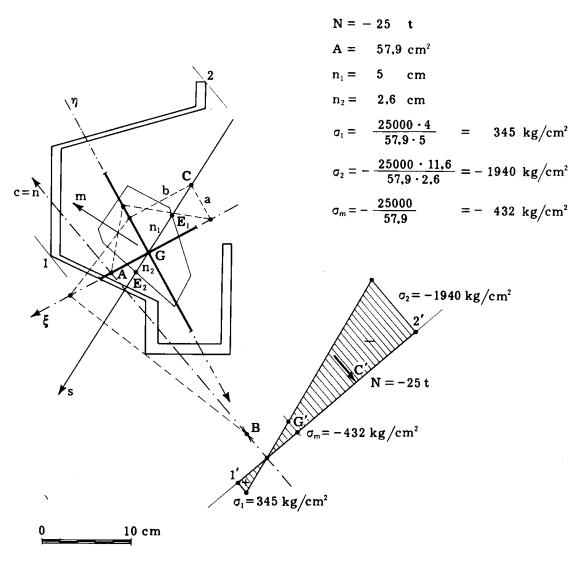


Fig. 7-6

esegue sovente nello studio degli archi metallici da ponte. Diverso è il caso degli archi in conglomerato, in relazione alla diversa parzializzazione della sezione per le varie condizioni di carico.

Nella fig. 7-6 è riproposta la sezione già trattata nel \S 6-5, soggetta ad una forza assiale di — 25 t (di compressione) agente in C. L'asse neutro si è ricavato graficamente.

L'asse di sollecitazione CG intercetta i due raggi di nocciolo

$$n_1 = 5 \text{ cm}$$
 $n_2 = 2.6 \text{ cm}$;

i due momenti di nocciolo valgono

$$M_{c1} = 25.000 \cdot 4 \;\; \text{Kg cm}$$
 $M_{c2} = 25.000 \cdot 11,6 \;\; \text{Kg cm}$,

ambedue positivi (assi vettori diretti secondo m). E' perciò

$$\sigma_1 = -\frac{M_{c1}}{A n_1} = -\frac{25.000 \cdot 4}{57.9 \cdot 5} = 345 \text{ Kg/cmq}$$
 $\sigma_2 = -\frac{M_{c2}}{A n_2} = -\frac{25.000 \cdot 11.6}{57.9 \cdot 2.6} = -1940 \text{ Kg/cmq}$.

Si ha poi

$$\sigma_{\rm m} = - rac{{
m N}}{{
m A}} = - rac{25.000}{57.9} = - 432 \; {
m Kg/cmq} \; .$$

5. Espressione del potenziale elastico e dell'energia di deformazione.

Nel caso della flessione composta il potenziale elastico è fornito, per la (2-23), da

$$\phi = \frac{\sigma^2_z}{2\,E} = \frac{1}{2\,E} \left(\frac{N}{A} + \frac{M_x}{I_v} \; y - \frac{M_y}{I_v} \; x \right)^2 \,. \label{eq:phi}$$

L'energia di deformazione relativa all'intero solido è

$$L = \int_{v} \varphi \, dV = \frac{N^{2} \ell}{2 E A} + \frac{M_{x}^{2} \ell}{2 E I_{x}} + \frac{M_{y}^{2} \ell}{2 E I_{y}}; \qquad (12)$$

i termini di scambio, e con essi l'energia mutua, sono nulli perchè, essendo i due assi x ed y principali d'inerzia, e quindi baricentrici e coniugati, risulta

$$\int_A x dA = \int_A y dA = \int_A xy dA = 0.$$

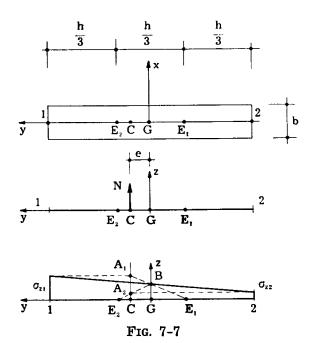
Il teorema di Clapeyron fornisce anch'esso

$$L_{e}\!=\!\frac{1}{2}\,F_{z}\,\Delta\ell+\frac{1}{2}\,\boldsymbol{m}_{x}\,\Delta\phi_{x}+\frac{1}{2}\,\boldsymbol{m}_{y}\,\Delta\phi_{y}\!=\!\frac{F_{z}^{\,2}\,\ell}{2\,EA}+\frac{\boldsymbol{m}_{x}^{\,2}\,\ell}{2\,EI_{x}}+\frac{\boldsymbol{m}_{y}^{\,2}\,\ell}{2\,EI_{y}}\;;$$

i lavori mutui sono nulli perchè le caratteristiche $N\ M_x\ M_y$ sono rispettivamente ortogonali a $\Delta\phi_x$ e $\Delta\phi_y$, a $\Delta\ell$ e $\Delta\phi_y$, a $\Delta\ell$ e $\Delta\phi_x$.

6. La sezione rettangolare.

Si consideri un solido di De Saint-Venant a sezione rettangolare $b \times h$, in cui il centro C (fig. 7-7) sia ubicato sulla mediana parallela ad h.



Il segmento di nocciolo disteso sulla mediana è lungo h/3. Sia e l'eccentricità di N, positiva se C giace dalla parte delle y positive.

Le (7-9) e (7-10) forniscono

$$\sigma_{z1} = \frac{N\left(\frac{h}{6} + e\right)}{\frac{bh^{2}}{6}} = \frac{N}{bh} \frac{\frac{h}{6} + e}{\frac{h}{6}} = \sigma_{m} \frac{\frac{h}{6} + e}{\frac{h}{6}}$$

$$\sigma_{z2} = -\frac{N\left(\frac{h}{6} - e\right)}{\frac{bh^{2}}{6}} = \frac{N}{bh} \frac{\frac{h}{6} - e}{\frac{h}{6}} = \sigma_{m} \frac{\frac{h}{6} - e}{\frac{h}{6}}.$$
(13)

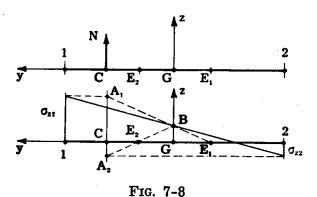
Effettuando la costruzione indicata nella fig. 7-7 (si riporta $BG = \sigma_m$ su z, si proietta B da E_1 ed E_2 , intersecando in A_1 e A_2 la parallela in C a z) si ha

$$ext{CA}_1: \sigma_m = \left(\frac{h}{6} + e\right): \frac{h}{6}$$
 $ext{CA}_2: \sigma_m = \left(\frac{h}{6} - e\right): \frac{h}{6}$

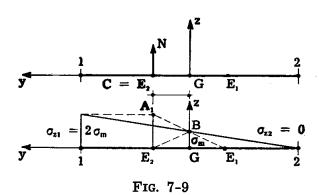
Dalle (7-13) e (d) si trae

$$CA_1 = \sigma_{z1}$$
 $CA_2 = \sigma_{z2}$.

La costruzione è la stessa se C è esterno al segmento di nocciolo (fig. 7-8); in questo caso risulta M_{c2} — N (h/6 — e) positivo e σ_{z2} negativo.



Se il centro C coincide con uno dei due punti di nocciolo (fig. 7-9) è $\sigma_{z1}=2$ σ_m , $\sigma_{z2}=0$; il diagramma delle σ_z è triangolare.



La retta d'azione di N deve contenere il baricentro del trapezio (intrecciato o meno) delle σ_z , poichè N è la risultante delle forze σ_z dA, pro-

porzionali alle σ_z dy. Se ne deduce la costruzione delle figg. 7-10 e 7-11, che si basa sulla nota ricerca del baricentro di un trapezio: si proiettano E_1 ed E_2 da un punto qualsiasi Q' della retta d'azione di N, ottenendo i punti C' ed A' sulle parallele a z per 1 e z. La congiungente z0 indivi-

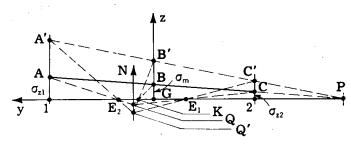


Fig. 7-10

dua il punto P sull'asse y. Tutti i trapezi come A' 1 2 C' per cui il lato A' C' incontra il lato 1-2 in P, hanno il baricentro sulla retta d'azione di N; è sufficiente perciò congiungere P con B (essendo $GB = \sigma_m$) per ottenere il diagramma delle σ_z . Poichè spesso (fig. 7-10) il punto P capita fuori dei

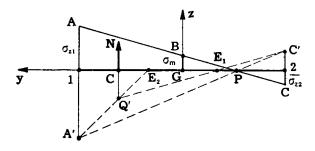


Fig. 7-11

limiti del disegno, basta considerare che i punti AA', CC', BB', si corrispondono in una omologia affine di asse 1-2, con centro nel punto improprio di z; perciò si può costruire il corrispondente Q di Q' congiungendo B' con Q', e proiettando la intersezione K di B' Q' con 1-2 da B in Q. Le proiettanti QE₁ e QE₂ forniscono σ_{z2} e σ_{z1} .

La costruzione suddetta vale sia per C interno al nocciolo che per C esterno ad esso (fig. 7-11).

7. Materiali non resistenti a trazione.

Sovente si è in presenza di materiali, come il conglomerato non armato e la muratura, la cui scarsa resistenza a trazione consiglia di con-

durre il calcolo prescindendo completamente da essa; in alcuni casi (muratura a secco) la σ'_{o} è in rigore uguale a zero.

Il calcolo di un solido di De Saint-Venant, costituito da un materiale siffatto, e sollecitato da una forza normale N di compressione eccentrica, non differisce da quello già esposto se il centro C di sollecitazione è interno al nocciolo; in questo caso infatti l'asse neutro non taglia la sezione, e le tensioni sono tutte di compressione. Se C è esterno al nocciolo, il calcolo condotto alla maniera usuale conduce ad un diagramma tensionale intrecciato, il che è inammissibile, attesa l'incapacità del materiale a sopportare sforzi di trazione. In questo caso una parte del solido non reagisce; occorre determinare la retta n_r che separa la parte S_r della sezione retta reagente a compressione da quella inerte $S - S_r$, attraverso la condizione — necessaria — che n_r sia asse neutro nella sollecitazione di pressoflessione provocata da N, e cioè che C ed n, si corrispondano come polo e antipolare rispetto all'ellisse di inerzia della sola parte S_r. Poichè n_r risulta tangente alla parte S_r , C giace sul contorno del nocciolo d'inerzia di S_r , e la congiungente il baricentro G_r di S_r con C è coniugata di n_r rispetto all'ellisse d'inerzia di S_r .

Il problema in generale non si presta ad una soluzione diretta, perchè per determinare n_r occorre conoscere l'ellisse di S_r , ed S_r a sua volta dipende da n_r , poichè è quella parte della sezione retta ubicata rispetto ad n_r dalla stessa parte di C. A volte però la direzione di n_r è nota a priori; questo capita quando la sezione ammette un asse di simmetria s (fig. 7-12)

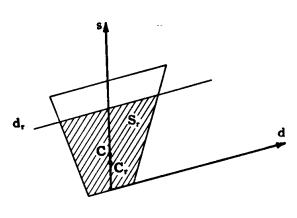


Fig. 7-12

coniugato ad una direzione d, ed il centro C giace su s. In tal caso qualsiasi retta d_r parallela a d stacca una parte S_r di sezione che ammette ancora l'asse di simmetria s, e perciò rispetto ad S_r le rette s e d_r sono coniugate; l'antipolo di d_r rispetto all'area S_r , C_r , giace su s. Esiste perciò una $d_r = n_r$ cui corrisponde $C_r = C$.

Per determinare la posizione di n_r una volta fissato C si divide (fig. 7-13) la sezione in strisce mediante rette molto vicine e parallele a d; si riportano le aree dS di queste strisce come vettori paralleli a d e applicati

nei baricentri delle singole strisce: sia OT il poligono dei dS. Si proiettano i dS da un polo P, e si traccia il corrispondente poligono funicolare, di cui sono a e b il primo e l'ultimo lato. Si proietta C secondo la direzione d sulla retta a, in E; da E si conduce una retta c tale che le due aree tratteggiate nella figura (comprese tra, a, c, e il poligono funicolare) risultino uguali.

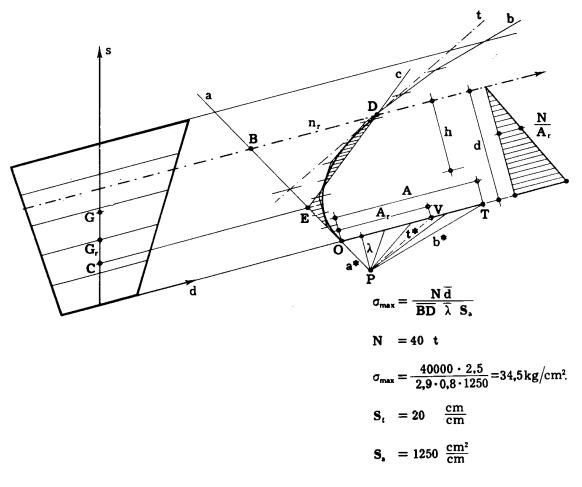


Fig. 7-13

Per il punto D in cui la retta c taglia il poligono funicolare passa l'asse neutro n_r . Infatti, chiamando λ la base del poligono funicolare, è, con riferimento alla parte S_r di sezione che giace rispetto ad n_r dalla stessa parte di C,

$$\begin{split} &I_n = 2 \ \overline{\Omega}_{BOD} \ \overline{\lambda} \ S_t{}^2 \ S_a \\ &S_n = \overline{B} \overline{D} \ \overline{\lambda} \ S_t \ S_a \end{split}$$

essendo I_n ed S_n il momento d'inerzia e il momento statico di S_r rispetto ad n_r , $\overline{\Omega}_{BOD}$ l'area (letta sul disegno) compresa tra il primo lato a del poligono funicolare, il poligono stesso, e la retta n_r , e \overline{BD} la misura sul

disegno del segmento BD. Per la costruzione fatta, l'area $\overline{\Omega}_{BOD}$ è pari a quella $\overline{\Omega}_{BED}$ del triangolo BED, e perciò (*).

$$h = \overline{h} \cdot S_{\iota} = \frac{2 \overline{\Omega}_{BED}}{\overline{BD}} S_{\iota} = \frac{I_n}{S_n}$$
 (e)

Poichè I_n/S_n è la distanza, dalla retta n_r , alla quale deve trovarsi il centro della retta n_r rispetto ad S_r , il punto C, che si trova a tale distanza, e sulla direzione coniugata di n_r rispetto ad S_r , è proprio il centro di n_r rispetto ad S_r .

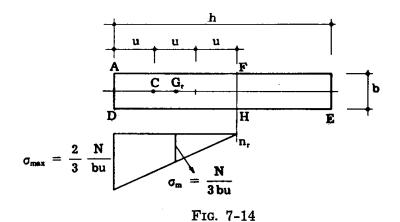
Sia t la tangente in D al poligono funicolare; il punto di incontro di a e t fornisce la posizione del baricentro G_r di S_r ; le parallele a^* e t^* ad a e t da P definiscono l'area A_r di S_r ; riportando il valore N/A_r in corrispondenza di G_r , si traccia immediatamente il diagramma delle tensioni σ_z .

Dalla (7-4) si ha direttamente:

$$\sigma_{\text{max}} = \frac{\text{Nd}}{S_{\text{n}}} = \frac{\text{Nd}}{\overline{\text{BD}} \cdot \overline{\lambda} S_{\text{a}}} , \qquad (f)$$

essendo d la distanza dell'asse neutro dal bordo della sezione reagente.

Per una sezione rettangolare $b \times h$, ove C è ubicato sulla mediana parallela ad h e fuori del nocciolo (o, come generalmente si dice, fuori del terzo medio, poichè il segmento di nocciolo coincide con il segmento centrale risultante dalla divisione della mediana h in tre parti) l'asse neutro n_r è parallelo a b, e, dovendo C ed n_r corrispondersi come



polo e antipolare rispetto al rettangolo ADHF (fig. 7-14), la dimensione

^(*) La costruzione della fig. 7-13 è la stessa riportata in fig. 1-28 ed 1-34. Si osservi che, nel caso trattato, è $\lambda < 0$, BD > 0, $S_n < 0$, h < 0, d < 0; inoltre, per quanto sopra, è pure $\Omega < 0$.

AF si ottiene triplicando la distanza u di C dal bordo AD. Risulta così

$$\sigma_{\text{max}} = \frac{2}{3} \frac{N}{\text{bu}} \,. \tag{14}$$

Si osservi (fig. 7-15) che l'asse n_r è più vicino a C di quanto non ri-

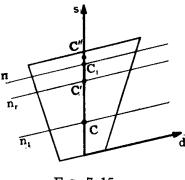


Fig. 7-15

sulti l'asse n nell'ipotesi di sezione completamente reagente. Infatti C è il centro relativo ad n rispetto a tutta la sezione S, e così C_1 è il centro relativo a n_1 rispetto a tutta la sezione. Ma C_1 è il baricentro di due masse, l'una pari al momento statico di S_r rispetto a n_1 e concentrata in C', centro rispetto ad S_r di n_1 , l'altra pari al momento statico di $S-S_r$ rispetto ad n_1 e concentrata in C'', centro di n_1 rispetto a $S-S_r$.

Il punto C' giace su n_r , e C'' è al disopra di n_r ; i momenti statici di S_r e di $S - S_r$ rispetto ad n_1 sono dello stesso segno; perciò C_1 è ubicato tra C' e C''.

Se il centro di sollecitazione C non è ubicato su un asse di simmetria della sezione, occorre procedere per tentativi. Fissata una direzione arbi-

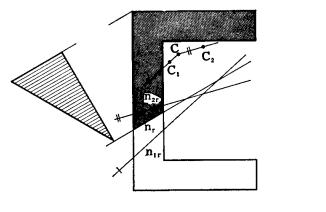
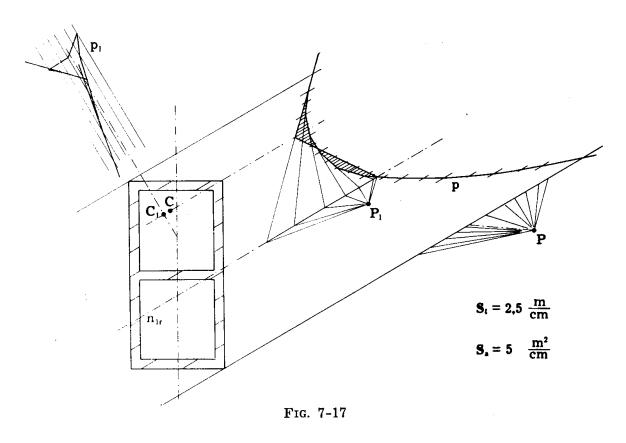


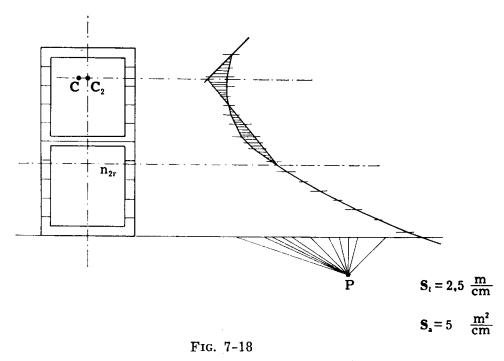
Fig. 7-16

traria n_1 (fig. 7-16) si esegue la costruzione già descritta (fig. 7-13) ot-

tenendo un asse neutro $n_{\scriptscriptstyle 1r}\,.$ Si costruisce poi il centro $C_{\scriptscriptstyle 1}$ di $n_{\scriptscriptstyle 1r}$ rispetto ad

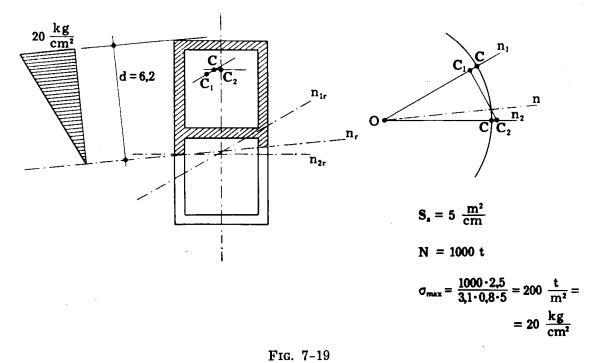


 $\boldsymbol{S}_{r}\,;\;\boldsymbol{C}_{\scriptscriptstyle 1}$ in genere non coincide con C, pur trovandosi sulla parallela ad $\boldsymbol{n}_{\scriptscriptstyle 1}$



per C; infatti per costruzione la distanza di C da n_{1r} è fornita dalla (e), e la distanza di C_1 da n_{1r} è data dalla stessa espressione.

Si effettua quindi un nuovo tentativo, prefissando un'altra direzione n₂



dell'asse neutro; si ottiene così l'asse neutro $n_{\rm 2r}\,,$ e il centro $C_{\rm 2}\,.$ Riportan-

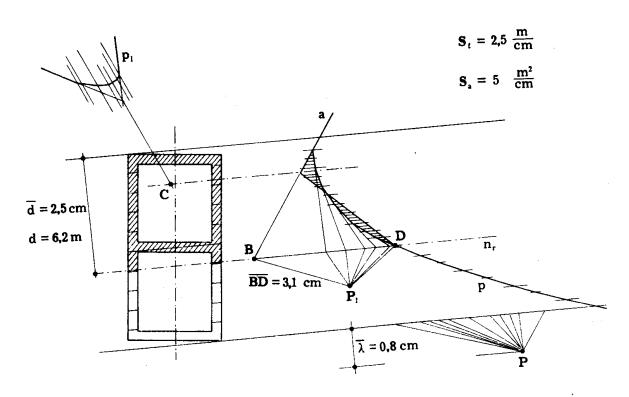


Fig. 7-20

do a partire da una circonferenza di centro O gli errori CC_i sui raggi paralleli alle direzioni n_i , l'intersezione della curva luogo dei punti C_i (curva

di errore) con la circonferenza definisce la giusta direzione n dell'asse neutro. In genere è sufficiente eseguire due tentativi, e assimilare la curva di errore alla retta C_1 C_2 .

Nelle figg. da 7-17 a 7-20 è riportato un esempio relativo ad una torre a sezione diaframmata.