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Abstract. The law of virtual work (VWL) is probably the first law in the history of mechanics; it is previous to
the one on the lever, though not completely distinct from it. Here I will discuss the logical status of VWL, that
is whether it is an autonomous principle or a theorem of some sort of mechanics. The problem is complicated
by the fact that up to now no universally recognised expression has been accepted for it. From this article the
problematical nature of VWL demonstrability is quite clear when the mechanics does not characterise completely
the constraints. Italian schools in the XVIII century, even if we do not take Lagrange into consideration, had an
important role, both in the development of VWL and in the discussion of its role.
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1. Introduction

The law of virtual work (VWL) is probably the first quantitative law in the history of me-
chanics, even older than the law of the lever according to Duhem [1], though not completely
distinct from it. Its utility became obvious only after the publication of Lagrange’s Mécanique
analytique in 1788, in which it was both a theoretical instrument – a mechanical principle –
and a method able to solve specific mechanical problems. Since then VWL has become an
integral part of all handbooks on mechanics, where, generally, it coexists with other laws,
from which it is sometimes derived and from which it sometimes derives.

Today its role in mechanics appears less clear, at least in its application in engineering.
In the study of the equilibrium of assemblies of rigid bodies it has become scarcely relevant
because the cardinal equations of statics, with constraint reactions as auxiliary unknowns, are
considered simpler and more direct. The role of VWL has become instead very important in
continuous mechanics, where, joined to the calculus of variations, it is used for developing
approximate procedures of solution. But one uses more the mathematical nature of weak
formulation of VWL than the ability to deal with the constraints. Notwithstanding these
contradictions the fascination for VWL has not changed, and I think it is necessary to try
to deepen the knowledge of its essence and its logical status.

In this paper the discussion presumes that mechanics can be given an axiomatic structure.
This is surely a limitation because most philosophers of science today think that the axiomatic
is not the unique or the best way to organise a physical theory. In my opinion, however, the
discussion of a relevant problem in the axiomatic organisation will also help us to understand
the role the same problem plays in a different organisation, and it is worthy of being pursued
independently of the epistemological positions.
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Assuming an axiomatic structure, to discuss the logical status of VWL means to discuss if
it is, or should be, the principle of an autonomous mechanics or a theorem of another type of
mechanics. To demonstrate a law, a proposition means, in a certain sense, to take it back to
other laws assumed as known, to principles accepted according to a current epistemological
conception. Until the development of modern axiomatic theories and their application to
physical science by the neopositivists of the XX century, a principle was accepted if it had an
intuitive nature of proof, possibly a priori founded. Nowadays there is a more liberal concep-
tion, and evidence of the principles is not asked for anymore; they must only contain enough
logical force not to create contradictions [2]. According to this evolution of epistemology, the
way of considering VWL has evolved too. Two different points of view have now the same
dignity. From the first VWL is not a principle and it must be proved; from the second it is
enough that assuming VWL as an axiom, a complete mechanics will result. In this paper the
first point of view, which is still the most common, is mainly explored. It must be noticed
however that recently, by reconnecting to the old position of the energetic movement [3], the
second alternative has gained prominence [4].

The demonstrability of VWL crashes immediately with the fact that today many formu-
lations exist for it [5], and many mechanical reference theories exist as well (for example,
Newtonian, Lagrangian, Eulerian, etc. [6]). This is also true for the systems of material points,
even though some interesting axiomatisations exist [7–9]. One of the major problems occur-
ring in the different formulations of VWL is the role of the constraints and the constraint
reactions. Before the XVIII century the constraints had simply been dealt with as passive
elements able to suffer but not react. Only after studies on elasticity and after having accepted
models of matter based on interacting corpuscles, one started thinking about constraints as
things able to give out force.

This difficulty in including the constraint reactions in a consistent mechanical theory
brought about the theoretical development of VWL, which offers a criterion of equilibrium
without permitting the intervention of these undesirable forces. However, the proposition
which asserts that ‘the sum of forces, each multiplied by the displacement of the point to
which it is applied, following the direction of this force, will always be zero’, had always
created some problems because of its scarcely intuitive nature; the following comment by
Fossombroni [10] is interesting:

Quella comune facoltà di primitiva intuizione, per cui ognuno si convince facilmente di
un semplice assioma geometrico, come per esempio, che il tutto sia maggiore della parte,
non serve certamente per convenire della sopraccennata verità meccanica, la quale è tanto
più complicata di quello che sia uno degli ordinari assiomi, quanto il genio di quei grandi
Uomini, che l’hanno ammessa per assioma, supera l’ordinaria misura dell’ingegno umano;
ed è in conseguenza necessario per coloro che non ne restano appagati, il procurarsene
una dimostrazione dipendentemente da estranee teorie [. . .] ovvero riposarsi sulla fede
d’uomini sommi, disprezzando l’usuale ripugnanza ad introdurre in Matematica il peso
dell’autorità.1

1 That common faculty of primitive intuition, for which everyone is easily convinced of a simple geometrical
axiom such as for example that the whole is greater than the part, is certainly not necessary to agree on the above-
mentioned truth of mechanics, which is more complicated than that of ordinary axioms the more the genius of
those great men that admitted it as an axiom exceeds the ordinary measure of human intelligence, and is therefore
necessary, for those that are not satisfied by it, to obtain a demonstration independent of other theories [. . .] that
is to rest upon the faith of great men, despising the usual repugnance to introduce the weight of authority in
Mathematics (Fossombroni, Memoria sul principio delle velocità virtuali, p. 13).
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After the success of Lagrange’s Mécanique analytique in 1788 [11], which assumes VWL
as the principle of whole mechanics, a lively debate started, and many attempts were made to
demonstrate VWL [12]. In the present work I will link up to these attempts and also previous
ones and will try to explain in what sense VWL can be demonstrated. The attempts can be
divided in two categories. The first one, which I will refer to as fundamental, tries to deduce
VWL as a criterion of equilibrium without assuming pre-existent criteria. The second cat-
egory, which I will refer to as reductionist, tries to deduce VWL from a pre-existent criterion
of a pre-existent mechanics.

Vincenzo Riccati, Vincenzo Angiulli, Lazare Carnot [13–15], and Lagrange [12] made
attempts in the first direction. The first two thought they could demonstrate VWL using a
reference mechanics of a Leibnizian type, lacking however a pre-existent criterion of equilib-
rium, and with considerations of a metaphysical nature. Lagrange took VWL back to one of
its more specific cases that he considered obvious: the law of the pulley. Carnot tried to get to
VWL starting from the law of shock using a reference mechanics ‘without’ force.

Attempts in the second direction were made by French scientists of École Polytechnique,
who synthesising and using Lagrange’s mechanics categories, used the reference mechanics
that derived from the law of lever and the rule of parallelogram. In my opinion the most inter-
esting results are the ones that Fourier [16] and Poinsot [17] obtained. The first one reduces
VWL to the law of lever, with a series of auxiliary and not particularly severe assumptions, and
therefore successfully. The second one develops a complete mechanical theory – that includes
the constraints – based on the rule of parallelogram.

Poinsot’s demonstrations is the one that has influenced the most the subsequent treatises on
statics. Its prevalence over Fourier’s, which may be more interesting, derives from the nature
of the reference mechanics considered, based on the rule of parallelogram, according to which
the laws of equilibrium can be reduced more easily to mathematical formulas.

In recent scientific literature the problem of VWL’s role is faced only in handbooks, where
the author reports his idea on the subject in a few pages, usually going back to a limited number
of basic versions. Regarding this refer to Drago [5] where a large number of texts are studied.

There are not many recent works of a theoretical nature on the basic aspects of VWL,
because there have not been recent attempts at funding studies on the mechanics of the material
point, even if the subject is far from being fully understood. It also seems that there are very
few recent studies of a historical nature on VWL [18]; it is dealt with only marginally in the
numerous monographs on Lagrange, Laplace, etc.

In the present paper I will consider those aspects indicated as being reductionist, my aim
being to fill in a small part of what I believe is missing from the knowledge of the logical status
of VWL. On the one hand, I will try to underline the logical problems, and precisely because
a generally accepted formulation of classical mechanics does not exist, the situation is not
considered in its general framework. To be exact, I presume a type of Newtonian mechanics
with only material points and forces applied to them. The formulation of VWL will emerge in
a natural way, and a possible extension to more general situations may only create technical
complications. On the other hand, I will illustrate some attempts to demonstrate VWL at the
end of the XVIII century and the beginning of the XIX century.

2. The Theorem and the Principle of Virtual Work

To start with, I consider a reference mechanics of the Newtonian type, hereafter referred to as
the N0 mechanics, in which only forces and material points exist. In this mechanics a system
S, of a finite number of material points, is said to be constrained when the configuration C of
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S is described by a differentiable submanifold M of dimension m < 3n instead of a 3n dimen-
sional differentiable manifold N, necessary in principle to describe the configuration of S.

External forces act on the material points, of which the law of temporal and spatial variation
is assigned, and other forces, associated with constraints, not known beforehand. The forces of
constraints, hereafter named constraint reactions, are simply the ‘ordinary’ forces necessary to
maintain the constraints; only they are unknown. Collecting known external forces in the vec-
tor f and the constraint reactions in the vector r, I assume the following axiom of equilibrium:

AXIOM 1. A configuration C of a system of material points constrained to move on a
differentiable manifold M is a configuration of equilibrium if and only if the equation can
be satisfied each time t:

f + r = 0

In the following, for the sake of simplicity, one given configuration C and all times t will always
implicitly be concerned.

Define now the virtual work of the forces acting on S as the linear form on the 3n-
dimensional vector space VN associated to N: L(v) = (f + r) · v, where dot means inner
product and v is any vector of VN, called virtual displacement. Consider also the other two
linear forms Lf(v) = f · v and Lr(v) = r · v called respectively virtual work of the active
forces and virtual work of the constraint reactions. One can easily demonstrate the following
theorem of virtual work:

THEOREM 1. A system of material points constrained to move on a differential manifold M
is in a state of equilibrium if and only if Lf(v) + Lr(v) = 0, for every v belonging to VN.

To verify the equilibrium, under Axiom 1 or with Theorem 1, one has to be able to specify
the way the constraint reactions depend on the manifold M and eventually on other parameters
that define the system of material points. A traditional way to characterise the constraint
reactions is to introduce the concept of smooth constraints. By considering the m-dimensional
vector space TC(M) tangent to M at C, whose vectors u are still called virtual displacements,
the following definition is given:

DEFINITON 1. A system of constraints associated to the manifold M and to a system of
material points S is smooth if, and only if, for every configuration C of S, Lr(u) = 0, for every
u belonging to TC(M).

For smooth constraints, the following theorem can easily be proved, from Theorem 1:

THEOREM 2. IF the constraints are smooth THEN a system of material points constrained
to move on a differentiable manifold M is in a state of equilibrium if and only if Lf(u) = 0,
for every u belonging to TC(M).

Notice that sometimes vectors u of TC(M) are also called virtual velocities. This is justified
because any vector u can be considered the tangent to a path of M passing through C; if this
path is parameterised with a (virtual) time, the velocity of the virtual motion along it is parallel
to u. When adopting this definition one should refer to f · u as ‘virtual power’ instead of
‘virtual work’. Nowadays the use of one or another term is only a question of style. I adopt the
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second nomenclature because it is more common; in the past, however, virtual velocities and
virtual displacements had some differences and consequently produced different approaches
(see Section 3).

Theorem 2 is also referred to as theorem of virtual work, as Theorem 1. Moreover, if one
does not specify, Theorem 2 is the Theorem of virtual work itself. It will then appear that the
problem of the logical status of VWL is solved: when properly formulated, it is a theorem
of statics. Unfortunately that is no more than an illusion masked by the words in which the
concept of smooth constraint has been given. Actually there is not an operative criterion to
establish whether or not a constraint is smooth, because it is so if and only if Lr(u) = 0 and
we cannot evaluate Lr(u) because we do not know r. So Definition 1 gives the circularity: for a
smooth constraint Lr(u) = 0, if Lr(u) = 0 the constraint is smooth; and Theorem 2 is useless.

To legitimate the usefulness of the theorem of virtual work and therefore the opportunity
of referring to Theorem 2 as to VWL, one needs an operative criterion to establish a priori if
a constraint is smooth or not. A way to use Theorem 2 is that of enlarging the N0 mechanics
by adding a statement about constraints, which should take the form of the following axiom:

AXIOM 2. (All) The constraints are smooth.

Therefore from Axiom 2, applying the modus ponens to Theorem 2, the following theorem
is obtained:

THEOREM 3. A system of material points constrained to move on a differentiable manifold
M is in a state of equilibrium if and only if Lf(u) = 0 for every u belonging to TC(M).

Theorem 3 is usually called the Principle of virtual work (VWP), for historical reasons,
independent of its being considered a theorem or not. Notice however that Theorem 3 is not a
theorem of the N0 mechanics because it derives from Axiom 1 of N0 and from Axiom 2 surely
independent of N0 (Theorem 3 could be a theorem of N0 only if Axiom 2 were its theorem.
But this is not the case). Because of the critical role it plays in the proof of VWP, Axiom 2
itself is often called the principle of virtual work. When Axiom 2 is interpreted as a form of
virtual work principle, we can say that VWP (Theorem 3) can be proved if and only if VWP
(Axiom 2) can be proved. However, I will not accept this definition, and with the term VWP
I will be always referring to Theorem 3.

Before discussing further the problem of demonstrability of Theorem 3 (or Axiom 2), it
is convenient to see whether or not Theorem 2 can be utilised by enlarging, only a little, the
N0 mechanics up to the N1 mechanics. What more is it possible to say about the constraints
for the corpuscular N0 mechanics? This mechanics permits, with a change of perspective, to
study the interaction of ‘bodies’ with the system S whose equilibrium is considered. In N1,
bodies of the empirical world are presumed created by material points that work as centres of
forces. Then a constraint, more than to an algebraic equation, can be associated, as normally
it is, to a set of bodies that are ‘hard’ enough to be considered impenetrable. When a material
point of S gets close to a body, some forces are awakened – the constraint reactions – that
oppose to penetration of this by that. Knowing the laws of the centres of forces depending on
the distance, the laws of interaction between the constraint-body and the material point, that
is the constitutive relationship of the constraint system, can be determined.

In this way there will not be any problems in deciding if a particular constraint is smooth
(Lr(u) = 0) or not on the basis of its constitutive relationship and on Definition 1. The theorem
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of virtual work Theorem 2 will then make sense because an operative criterion will exist to
apply it in each case on the basis of considerations of empirical nature. One must notice,
though, that in mechanics, one tends to apply the principle and not the theorem of virtual
work because, generally, the hypothesis of smooth constraints is not subjected to investigation
because in practice it is not possible, and therefore when we speak of VWL we are actually
referring to VWP. Therefore the problem of demonstrability of VWP (Theorem 3) must be
considered.

It has been seen above that by introducing Axiom 2, Theorem 3 becomes a theorem of an
enlarged mechanics. But it was and is still felt that this is not a good move, because Axiom 2 is
not self-evident. Admitting that the constraints are formed by bodies, in the past it was thought
of demonstrating Axiom 2 assuming first an axiom that is weaker. Empirical experience
suggests that a surface of a body polished and possibly oiled, which in current language is
called smooth (2), is smooth (1) according to Definition 1, because it is found that VWP gives
correct results for it (notice however that smooth(1) is a nominal definition (quid nominis)
while smooth(2) is a real definition (quid rei) and from a logical point of view smooth(1) has
nothing to do with smooth(2)). People are then justified in assuming the following axiom:

AXIOM 3. IF the surface of a body is smooth(2) THEN it is a smooth(1) constraint for
material points.

Axiom 3 is weaker than Axiom 2 because it contains a condition for smoothness(1) and
mainly because M is not usually a surface of the three-dimensional space owing to the internal
constraints (think for example of two material points constrained to maintain constant their
distance). It is clear that this axiom expresses an ideal; practically the constraints will never be
smooth(2) because of the inevitable irregularities. When a surface is not smooth(2) it can still
be assumed as smooth(1), but results obtained by applying VWP should be regarded only as
‘approximated’. Is it possible to demonstrate Axiom 3 in the N1 mechanics? There are doubts.
The only possibility to prove Axiom 3 lies in the criteria of symmetry and sufficient reason,
by affirming that reactions must always be orthogonal to the constraints because there is no
reason for them not to be. But in the corpuscular mechanics N1 the same concept of surface
of a body presents some difficulties. Even if one should ignore this aspect, the demonstration
of normality of the reaction to the surface of the constraint (necessary and sufficient condition
for Lr(u) = 0) will require the use of axioms on corpuscle forces with a nature of evidence
hardly superior to Axiom 3’s. Thus Axiom 3 cannot be possibly proved in N1; consequently
it should be considered an independent axiom justified only by the empirical evidence.

But even if we admit Axiom 3, it is not possible to demonstrate Axiom 2. In fact, Axiom 3
does not permit us to say anything about the internal constraints; in particular it does not
permit us to say anything about the rigid body constraints, for which the smoothness concept
does not appear to be very intuitive, because no movement is possible among internal particles.
So, if one does not change the reference mechanics, even if Axiom 3 is admitted, Axiom 2 is
not demonstrable, and therefore VWP is not a theorem. A possible extension of the axiom of
mechanics of reference, following Euler, can consist in substituting Axiom 1 with the cardinal
equations of statics (N2 mechanics). In this way one will be advantaged in dealing with the
applicability of VWP to the rigid body. But in the presence of internal constraints among the
different rigid bodies or of external constraints in rigid bodies, the difficulties encountered
in dealing with the system of material points will present themselves again. Concluding,
when in a reference mechanics, like N0, N1 or N2, there are not assumptions of an empirical
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nature dealing with the constraints, creating the problem of demonstrability of VWL makes
no sense.

To understand the difficulty in proving Axiom 2 from Axiom 3, it is very interesting
to analyse Poinsot’s reasoning referred to in the subsequent paragraphs. Poinsot succeeded
in demonstrating Axiom 2 from Axiom 3 but only at the price of enlarging the classical
framework of statics with some very questionable ‘principles’, which allow us to characterise
completely the constraint reactions.

3. The Historical Evolution of Virtual Work Law

3.1. A SHORT SUMMARY

From Greek origins of mechanics till now, there have been two formulations of VWL. The
first one dates back to the Aristotelian school, and today it will go under the name of law of
virtual velocities. The second one may be clearly found only with Jordanus de Nemore (XIII
century), but probably it was already known in Hellenistic times, and today it will go under
the name of law of virtual displacements.

Johann Bernoulli, at the beginning of the XVII century [19, 20], formulated VWL with
the concept of infinitesimal virtual displacement, and unified the Aristotelian and de Nemore
points of view. Lagrange gave VWL its modern form a half century later, in 1764 [21]:

C’est un principe généralement vrai en Statique que, si un système quelconque de tant
de corps ou de points que l’on veut, tirés chacun par des puissances quelconques, est en
équilibre, et qu’on donne a ce système un petit mouvement quelconque, en vertu duquel
chaque point parcoure un espace infiniment petit, la somme des puissances, multiplies
chacune par l’espace que le point ou elle est appliquée parcourt suivant la direction de
cette même puissance, sera toujours égale à zéro.2

Both Bernoulli and Lagrange introduced VWL without any proof.
The appearance of the first edition of Lagrange’s Mécanique analytique [11], with the

importance that it gave to VWL (yet not proved), was the occasion for a lively discussion on its
logical status, and it was also the occasion for a critical analysis of the principles of mechanics.
The importance of this analysis, which does not have any precedence in the history of classical
mechanics, is not understood today. The list of scientists interested in the problem indicates
the efforts made and the possibility of learning much by following their ideas: L. Carnot,
Lagrange, Laplace, Poinsot, Fourier, Prony, Ampère and subsequently also Cauchy, Gauss,
Poisson, and Ostrogradsky. A synthesis of the ideas developed by some of these scientists is
reported in Bailhache’s book [18].

According to the essentially Aristotelian epistemology of the time, VWL could not be
accepted as a principle because it was not evident a priori; it had to be demonstrated, or
reduced to a theorem of another mechanics approach, or it would have been supplied by a
more convincing version of it.

2 A principle generally true in statics exists according to which if a system of how many bodies points is
wanted, forced each by arbitrary forces, is in an equilibrium state and if somebody gives the system a small
motion, arbitrary, so that each point covers an infinitesimal space, the summation of forces, each multiplied by
the space covered from the point it is applied, is always equal to zero (Lagrange, Recherches sur la libration de la
Lune, pp. 8–9, Ouvres, Tome VI).
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The problem of the demonstration of VWL provoked a strong discussion, especially
in France. In Italy too there were important contributions. Before the publication of the
Mécanique, one must remember Vincenzo Riccati [13], Vincenzo Angiulli [14] and François
Daviet de Foncenex [22], and after its publication Vittorio Fossombroni’s contribution must
be quoted too. In Italy the role of VWP continued to be relevant also in the XIX century and
at the beginning of the XX century, see for example works by Levi Civita [23] and Signorini
[24]. In the following pages, having regard for space and the need for internal consistency,
I will describe shortly Riccati’s and Angiulli’s reasoning, which is foundational; then I will
describe briefly Fossombroni’s work, which follows a reductionist view, and then devote much
space to Poinsot, again a reductionist view.

3.2. THE ITALIAN SCHOOL

Vincenzo Riccati and Vincenzo Angiulli presented a version of VWL that went under the
name of Principle of actions [13, 14]. Although the idea is manly Riccati’s, I will explain
only Angiulli’s reasoning, which is less original but more careful as regards the foundational
aspects. Angiulli tried to deduce VWL not starting from other principles of mechanics, but
from ‘indubitable’ metaphysical principles, among which is the equivalence of the cause
with the effect. He starts from the Leibnizian concept of dead force, which he presents as an
infinitesimal impulse, of f ds type (where f is the intensity of the impulse, identified with the
dead force, and ds is the infinitesimal displacement of the point which the dead force is applied
to), continuously renovated because of the effect of gravity or other causes and continuously
destroyed by the action of constraints. Once the constraints are removed, the impulses can be
accumulated, and the action of dead force consists in the cumulative effect of the impulses that
are not destroyed by the constraints. It generates the live force. In the initial instant the action is
infinitesimal, but it differs from dead force because the infinitesimal ds is different from zero.
With the introduction of the infinitesimal action, Angiulli can state his principle of actions,
which he qualifies as a theorem because it is demonstrated by metaphysical considerations:

L’equilibrio nasce da ciò, che le azioni delle potenze, che equilibrar si devono, se nas-
cessero, sarebbero uguali, e contrarie; e perciò l’uguaglianza, e la contrarietà delle azioni
delle potenze è la vera causa dell’equilibrio [. . .]. L’equilibrio non è altro, che l’impedi-
mento de’ moti, cioè degli effetti dell’azione delle potenze, a cui non è meraviglia se
corrisponde l’impedimento delle cause, cioè delle azioni stesse.3

The principle of action implicates the relation
∑

fi dsi = 0, where fi dsi are the elementary
actions that develop in the infinitesimal displacements dsi compatible with the constraints.
Therefore it is a possible formulation of VWL. In Angiulli’s treatment, the status of the
constraints is that of hard bodies, that is of idealised bodies that absorb all the impulses, both
of dead force and of live force, in the direction in which they act; they do not have any effect
on the impulses in the directions where motion is permitted. That is, the constraints obey an
economy criterion, acting only for as much as they are respected. One should notice that the
constraints have only the effect of destroying the motions and that they do not produce any
constraint force because this concept is unknown to Leibnizian mechanics.

3 Equilibrium is born from what, if the actions of powers, which must equilibrate themselves, were born,
they would be equal and contrary; then the equality, and the opposition of powers is the true cause of equilibrium
[. . .]. Equilibrium is nothing but the impediment of motions, that is of the effects of the action of powers, which
is no surprise if the impediment of the cause, that is the actions themselves, corresponds to it (Angiulli, Discorso
intorno agli equilibri, p. 17).
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Less clear is the role played by Daviet de Foncenex (born in Savoia in 1734, died in
Casale in 1799) who was Lagrange’s student, though older than him. In 1762 he wrote the
paper Sur les principes fondamentaux de la Mécanique in the second volume of Miscellanea
philosophica mathematica Societatis privatae taurinensis. In the same volume appeared two
basic papers by Lagrange regarding the calculus of variations and its application to mechanics
[25]. Foncenex’s paper contains many interesting statements concerning VWL, one of which
says that the principle of virtual work ‘can be considered with reason as the most fruitful and
universal of whole mechanics; all others reduce to it without effort [. . .] they are nothing but
the same principle reduced in formulas’. These are the same words Lagrange will use in its
Mécanique analytique. The opinion of many historians, among whom is Galletto [25], is that
Foncenex’s paper was strongly influenced by Lagrange. So studying Foncenex is important
only to understand the evolution of Lagrange’s mind but not to understand the evolution of
VWL itself; for this reason he will not be dealt with here.

Vittorio Fossombroni demonstrates, in his work in 1794, VWL in the case of a rigid body,
not constrained. His demonstration of VWL should be considered the first public convincing
reduction of Bernoulli’s principle to the cardinal equations of statics. Fossombroni’s demon-
stration, translated in vector calculus, is very simple. The virtual displacements associated to a
generic act of infinitesimal rigid motion are supplied by the relation dsi = ωωω×ri+ds0, whereωωω

and ds0 are arbitrary vectors, ri is the position vector of the point of application of the generic
force fi, and × is the symbol of the vector product. The virtual work of the forces applied to the
rigid body is therefore given by L = fi · dsi = fi · (ωωω×ri+ds0) = (ri×fi) ·ωωω+(fi) · ds0,
where the permutable properties of the mixed product is considered. With these positions to
prove VWL is easy: (1) from the cardinal equations of statics fi = 0, ri × fi = 0, that
hold the equilibrium, it follows L = 0; (2) vice versa, because ωωω and ds0 are arbitrary, L = 0
implies the cardinal equations of statics. The effective proof presented by Fossombroni is
much more elaborate, but only because he did not know the vector calculus, which had yet to
be developed.

Fossombroni’s attempt to substitute infinitesimal displacements, with which he had some
embarrassment, with displacements of arbitrary entity is quite interesting. He qualifies VWL
with the term ‘law of moments’, following Galileo’s and Lagrange’s terminology, when he
must use the infinitesimal virtual displacement, and with the term ‘law of forces’, when he
can use the finite displacements. Fossombroni demonstrated that if the forces are parallel to
each other and their application points are aligned, then the virtual work of these forces is zero
for any finite rigid motion, and therefore both the law of force and the law of moments are
valid. Fossombroni’s idea was generalised to the case of forces in the space with application
points on a surface by Poinsot, who felt the same awkwardness in the use of infinitesimal
quantities.

3.3. THE CONTRIBUTION BY POINSOT

Louis Poinsot, with Fourier, was the one who was the most successful in reductionist attempts.
But, as I said before, because his mechanics of reference based on the rule of parallelo-
gram was, and still is, considered by mathematicians and physicists more interesting than
Fourier’s based on the law of lever, Poinsot’s formulation of VWL [17] has become a model
of demonstration for almost all the handbooks of statics.
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Poinsot takes for granted Axiom 3, or more precisely a modified version of it, which does
not require the concept of constraint reaction, which can be stated in the form: a material point
is in equilibrium on a surface if and only if the force applied is orthogonal to it:

En effet, on démontre que, si un point n’a d’autre liberté que celle de se mouvoir sur une
surface ou sur une ligne courbe fixement arrêtée; il n’y peut être équilibre, à moins que
la résultantes des forces qui le sollicitent ne soit perpendiculaire à cette surface où a cette
ligne courbe.4

In reality he does not demonstrate what he declares, and does not even have the possibility
to do so, because his constraints are not beings but only analytical expressions. Poinsot is not
the only one to hold as self-evident that a constraint cannot oppose itself to tangent forces;
Laplace is convinced of this too:

Or la force de pression d’un point sur une surface lui est perpendiculaire; autrement elle
pourrait se décomposer en deux, l’une perpendiculaire à la surface, et qui serait détruite
par elle, l’autre parallèle à la surface, et en vertu de laquelle le point n’aurait point d’action
sur cette surface, ce qui est contre la supposition.5

The reasoning is not conclusive; in fact it reduces itself to a trivial tautology according to
which the constraint does not act in a tangent direction because it does not act in a tangent
direction. Lagrange expresses similar ideas too:

Or si l’on fait abstraction de la force P, et qu’on suppose que le corps soit forcé de se
mouvoir sur cette surface, il est claire que l’action, ou plutôt la résistance que la surface
oppose ou corps, ne peut agir que dans une direction perpendiculaire à la surface;6

But he seems to realise the difficulty of the problem because often in his essays he takes
the constraints expressed by an analytic expression back to the constraints created with in-
extensible and non-rigid wires. In this case the orthogonality of the reaction to the surface,
for example to the spherical surface described by a material point, appears more convincing,
although basically it is taken back to our everyday experience.

Beyond the Axiom 3, Poinsot considers other principles; the first Poinsot presents is the
‘solidification’ principle, according to which if other constraints are added – both internal
and external – to a system of bodies in equilibrium, the equilibrium is not altered, and the
distribution of the forces in the points that have not been constrained is not modified. This
principle had been used by Stevin, Clairaut, and Euler to study fluids and will be used in the
future by Duhem [26] to obtain field equations of equilibrium for a tridimensional continuum.
The second principle is presented by Poinsot as the fundamental property of equilibrium; it
states that the necessary condition – and sufficient too – for equilibrium of a free system is

4 Actually it is demonstrated that, if a point does not have any freedom in space other than moving over a
surface or along a curve line strongly fixed, there cannot be any equilibrium unless the resultant of the forces that
influence it is not perpendicular to this surface or to this curve line (Poinsot, Théorie générale de l’équilibre et du
mouvement des systèmes, p. 234).

5 Now the force of the pressure of a point on a surface is perpendicular, otherwise it could divide itself in two
[components], one perpendicular to the surface, that would be destroyed by it, and the other parallel to the surface,
and because of it, the point would not act at all on the surface, that would be against the assumption (Laplace,
Mécanique Celeste, p. 11).

6 If one abstracts the force P , and supposes that a body is forced to move on this surface, it is clear that the
action, or rather the surface’s resistance to the body, cannot act in the direction orthogonal to the surface (Lagrange,
Théorie des fonctions analytique, Œuvre, Vol. 9 (1813), p. 378).
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that all forces applied to various points should be able to reduce themselves to any number
of couples of forces identical and opposite to each other. The third principle is required by
the second one and deals with the possibility of decomposing a force in other forces using
the parallelogram rule. A fourth principle of mechanics deals with the superposition of the
effects of the constraints, according to which if more constraints act on a system of points,
they are able to absorb the sum of the forces that each constraint is able to absorb separately.
On the basis of these principles, which are however arguable, he demonstrates Axiom 2. More
precisely he proves that reactions are ‘orthogonal’ to constraints:

Quelles que soient les équations qui règnent entre les coordonnées des différens points du
système, chacune d’elles, pour l’équilibre, demande q’on applique à ces points, le long le
leurs coordonnées, des forces quelconques proportionnelles aux fonctions primes de cette
équation, relativement à ces coordonnées respectives (in italic in the original paper).

Ainsi, en représentant par L = 0, M = 0, &c. des équations quelconques entre les
coordonnées x, y, z; x′, y′, z′, &c. des différens points, et par λ, µ &c. des coefficients
quelconques indéterminés, on aura, pour les forces totales, X, Y , Z; X′, Y ′, Z′; &c., qui
doivent être appliquées à ces points suivant leurs cordonnées:

X = λ

(
dL

dx

)
+ µ

(
dM

dx

)
+ &c. Y = λ

(
dL

dy

)
+ µ

(
dM

dy

)
+ &c.
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(
dL

dz

)
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(
dM

dz

)
+ &c.
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(
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)
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(
dL

dy′

)
+ µ

(
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)
+ &c.

Z′ = λ

(
dL
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)
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(
dM

dz′

)
+ &c. &c.

Si l’on élimine de ces équations les indéterminées λ,µ &c., il restera les conditions de
l’équilibre proprement dites, c’est-à-dire, les relations qui doivent avoir lieu entre les seuls
forces appliquées et les coordonnées des leurs points d’application pour l’équilibre du
système.7

7 Whatever are the equations among the coordinates of the different points of the system, for the equilib-
rium, each one requires that, along the coordinates, any force should be applied respectively to these points
proportionally to the derivative of these equations with respect to the coordinates.

Therefore, representing with L = 0, M = 0, etc. the equations of any coordinates x, y, z, x′, y′, z′, etc. of the
different points, and with λ,µ, etc. any undetermined coefficients for the forces X, Y , Z, X′, Y ′, Z′, etc. that must
be applied to these points according to the coordinates, there will be:
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The next step, to demonstrate VWP, which may appear trivial according to the consider-
ations of the first part of this article, did not present itself in these terms to Poinsot simply
because the then dominant idea of virtual displacement was based on the concept of in-
finitesimals, and this created some awkwardness. Poinsot was the first one to eliminate the
concept of infinitesimal displacement and to substitute it with the concept of virtual velocity.
To understand Poinsot’s hostility, shared by others, towards virtual infinitesimal displacements
one should consider the fact that the idea of infinitesimal was still obscure and there was no
agreement on it. Moreover, Poinsot believed that virtual velocity, which had to be used instead
of virtual displacements, should refer to virtual time and not to real one (the problem presents
itself in the case where the forces depend on time and/or velocity). According to Poinsot, real
time and virtual time run in different universes: ‘the displacement [. . .] is a simple change of
position in which time has no importance’.

The following statements illustrate Poinsot’s position regarding virtual displacements:

On voit par-là qu’on peut prendre des vitesses quelconques finies [. . .]. Quand l’on veut
mesurer ces vitesses par les espaces mêmes que les corps décrivent réellement, comme
elles, varient à chaque instant par la liaison des corps, il faut prendre ces espaces, infi-
niment petits, sans quoi ils ne mesureraient plus les vitesses imprimées; et c’est ainsi
qu’on tombe dans les vitesses virtuelles proprement dites, où le principe vient perdre une
partie de sa clarté.8

Le principe de cette manière n’offre plus aucune trace dé ces idées de mouvemens infi-
niment petits, et de perturbation d’équilibre, qui paraissent étrangères à la question, et qui
laissent dans l’esprit quelque chose d’obscur.9

Substituting virtual displacement with virtual velocity, the demonstration of VWP is im-
mediate. I will report only the necessary part – according to which if the system is balanced
then the virtual work of the force is zero – with Poinsot’s words and symbols:

Soit le système défini par les équations suivantes, entre les coordonnées des corps,

f (x, y, x; x′, y′, z′, &c.) = 0. φ(x, y, x; x′, y′, z′, &c.) = 0. &c. (A)

Supposons qu’on imprime à tous ces corps des vitesses quelconques qu’ils puissent avoir
actuellement sans violer les conditions de la liaison; les coordonnées x, y, z; x′, y′, z′ &c.,
varieront avec le temps t , dont il faudra les regarder comme fonctions; et, pour que les
vitesses imprimées (dx/dt ), (dy/dt ), (dz/dt), (dx′/dt), &c. soient permises par liaison

If the indeterminate λ, µ, etc., are eliminated from these equations, they will remain the condition of equilibrium
properly said, that is the relations that there should be among the only forces applied and the coordinates of their
points of application (Poinsot, Théorie générale de l’équilibre et du mouvement des systèmes, p. 228).

8 As one can see [for the validity of the principle of virtual work] any finite velocity can be taken. . . When
one wants to measure these velocities for the spaces that the bodies cover in reality because these [velocities] vary
instant to instant due to the constraints, one must then consider infinitesimally small spaces; if not they would
not measure the given velocities anymore; and in this way one falls in the principle of virtual velocities where
the principle loses a part of its clearness (Poinsot, Théorie générale de l’équilibre et du mouvement des systèmes,
pp. 238–239).

9 In this way the principle does not present anymore any trace of these ideas of infinitesimal displacements
and perturbations of equilibrium, which seem strangers to the problem and which leave something obscure in the
spirit (Poinsot, Théorie générale de l’équilibre et du mouvement des systèmes, p. 239).
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comme on le suppose, il faudra qu’elles satisfassent aux équations,

f ′(x)
dx

dt
+ f ′(y)

dy

dt
+ f ′(z)

dz

dt
+ f ′(x′)

dx′

dt
+ f ′(y′)

dy′

dt
+ &c. + &c. = 0.

φ′(x)
dx

dt
+ φ(y)

dy

dt
+ φ′(z)

dz

dt
+ φ′(x′)

dx′

dt
+ φ′(y′)

dy′

dt
+ &c. + &c. = 0. (B)

&c.

tirées des précédentes (A); il suffira qu’elles y satisfissent pour que les conditions de
la liaison soient observées. Ou bien si l’on multiplie ces équations par des coefficiens
quelconques indéterminés λ,µ, &c., et qu’on les ajoute, il suffira qu’elles satisfassent à la
seule équation suivante indépendamment de λ,µ, &c.

[λf ′(x) + µφ′(x) + &c.]dx

dt
+ [λf ′(y) + µφ′(y) + &c.]dy

dt
+

+[λf ′(z) + µφ′(z) + &c.]dz

dt
+ [λf ′(x′) + µφ′(x′) + &c.]dx′

dt
+

+[λf ′(y′) + µφ′(y′) + &c.]dy′

dt
+ &c. + &c. = 0. (C)

Or les fonctions qui multiplient les vitesses (dx/dt ), (dy/dt ), (dz/dt), (dx′/dt), &c., ne
sont autre chose (après ce qui a été démontré) que les expressions générales des forces
capables d’être en équilibre sur le système. Supposant donc des forces X,Y,Z; X′, Y ′, Z′,
&c., feraient actuellement équilibre, on aurait:

X
dx

dt
+ Y

dy

dt
+ Z

dz

dt
+ X′ dx′

dt
+ Y ′ dy′

dt
+ Z′ dz′

dt
+ &c. + &c. = 0. (D)10

10 May the system be defined by the following equations between the coordinates of the bodies:

f (x, y, x; x′, y′, z′, &c.) = 0. φ(x, y, x; x′, y′, z′, &c.) = 0. &c. (A)

Supposing that any velocity is given to all these bodies that there can really be without violating the conditions
of the constraints; the coordinates x, y, z, x′, y′, z′, etc. will vary with time t , which we consider functions; and
so that the given velocity (dx/dt ), (dy/dt ), (dz/dt), (dx′/dt), etc. are accepted by the constraints, as it had been
supposed, it will be necessary that they satisfy the equations,
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dx

dt
+ f ′(y)

dy
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dt
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dt
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dt
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&c.

obtained from the previous one (A) and if they satisfy them it will be enough so that the conditions of constraints
will be satisfied, if these equations are multiplied for any undetermined coefficients λ, µ, etc. and if they are
summed up it will be sufficient for them [the velocities] to satisfy the single following condition, independently
from λ, µ, etc.

[λf ′(x) + µφ′(x) + &c.]dx

dt
+ [λf ′(y) + µφ′(y) + &c.]dy

dt
+

+[λf ′(z) + µφ′(z) + &c.] dz

dt
+ [λf ′(x′) + µφ′(x′) + &c.]dx′

dt
+

+[λf ′(y′) + µφ′(y′) + &c.] dy′
dt

+ &c. + &c. = 0. (C)

The functions that multiplied the velocities (dx/dt ), (dy/dt ), (dz/dt), (dx′/dt), (after what has been demon-
strated) are nothing but the general expressions of the forces capable of being in equilibrium on the system and
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Because Poinsot’s virtual velocities, depending on the fact that they develop in virtual time,
coincide with the virtual displacements introduced in the first part of this article, (D) represents
the demonstration of the necessary part of the Theorem 3 that is, of VWP.

4. Conclusions

The problem of the logical status of VWL is complicated by the fact that till today no formu-
lation exists which is universally accepted nor a defined framework of mechanics with which
it is possible to confront ourselves. In this work I think I have shown under which point of
view VWL may be considered a theorem of a given mechanics and under which conditions it
must be considered an axiom (VWP). It appears clear that, as defined, the problem of demon-
strability of VWP in a mechanics of reference is supplied by sense only if the constraints are
characterised sufficiently in it. Only if this characterisation is complete, as when all constraints
are assumed as smooth, to prove VWP is trivial. The characterisation of constraints cannot be
based on a priori evidence but must have an empirical nature.

At the end of the XVIII century, after the publication of Lagrange’s Mécanique analytique,
VWL was at the centre of a lively debate; the demonstrations that had been attempted, even if
they were interesting, did not appear to be definitive. Probably the most convincing one was
Fourier’s, which took VWL back to the law of lever; if this last one is accepted, then Fourier’s
reasoning can be considered conclusive. Due to lack of space, I was not able to present this
debate in a detailed way and had to restrain myself from referring to the not so well-known
contributions of the Italian school. But I dedicated some space to Poinsot’s demonstration,
because I believe that it influenced most the ‘demonstrations’ reported in the handbooks of
statics, especially in the way it defines virtual displacements. Poinsot worked in the direction
that I have called reductionist; first he defined completely his type of mechanics, and without
introducing the questionable concept of constraint forces, he determined the conditions for the
equilibrium of a system of points subject to internal and external constraints. After introducing
in an appropriate way the virtual velocities, he had no difficulty in demonstrating VWP and
the complete equivalence of the conclusions that ensued from it with those ensuing from the
mechanics of reference.

In this paper I have dealt only with the case in which virtual displacements develop in
virtual time; no attention has been given to when VWL is defined with displacements that
develop in real time, that is with the same time with which the forces applied to the system
vary. In this case the problem of the role of VWL appears more complex.
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