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1. Introduction. This article is one of a pair devoted to an historical study of
the influence of the theory of elasticity upon the development of mathematical
analysis. In the accompanying article (which appears in this issue of the
Bulletin) C. Truesdell describes the contribution made by elasticity to analysis
through the middle of the nineteenth century. By that time, the three-dimen-
sional theories of linear and nonlinear elasticity had been well established.
From then on, linear elasticity has enjoyed an extensive development, char-
acterized by the use of increasingly sophisticated methods of linear analysis.
Nonlinear elasticity, on the other hand, was not to I'CCCIVC sustained scrutiny
until after the Second World War.- :

In this article I refrain from discussing developments in the century begin-
ning in 1855 in order to take up the more fascinating tale of the modern
interaction of nonlinear elasticity with nonlinear analysis. (St. Venant’s memoir
on torsion, discussed by Truesdell, appeared in 1855. Cauchy died in 1857.)
Despite this gap, the subject of my account is a fitting complement to that of
Truesdell, because the modern problems of nonlinear elasticity are much closer
in spirit to those studied by the Bernoullis and Euler than to the linear
problems studied by the successors of Cauchy. Below we examine several areas
of modern analysis to which elasticity has made crucial contributions.

2. Connectivity questions of global bifurcation theory. An elastica is a
mathematical model for a thin, flexible beam. Its configuration is described by
a curve. Bifurcation theory began with Euler’s (1744) analysis of the planar
equilibrium configurations of the elastica subjected solely to end forces. This
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problem is governed by the following differential equations for the curve
[0,1] 3 s+ (x(s), y(s)) in the (x, y)-plane:

(2.1) [B(s)6'(s)]" + Asin6(s) = 0,
(2.2) x'(s) =cosb(s),  y(s) = sin 6(s).

These equations are to be supplemented with a suitable set of boundary
conditions. s represents a scaled arc length parameter. The x-axis is taken
parallel to the line of forces. 0(s) is the angle the tangent to the curve (x, y) at
s makes with the x-axis. A is the magnitude of the terminal force, taken to be
positive when compressive. B(s), which is positive, is the stiffness of the beam

at s. B is not constant when the thickness is not constant.

For certain boundary conditions, such as those in which the positions and orientations of each
end of the elastica are prescribed, the terminal force may have one prescribed component and one
reactive component (Lagrange multiplier) that maintains the kinematical boundary condition. In
this case the reactive component and hence the terminal force are not known a priori. In particular,
neither A nor the orientation of the x-axis with respect to any fixed line in the plane is known a
priori. When this happens the problem for 8 cannot be uncoupled from that for x and y.

For the case in which B = const. Euler gave an exhaustive qualitative
description of all possible solutions of (2.1), (2.2), but only a partial analysis of
solutions of actual boundary value problems for these equations. (He for-
mulated his problem entirely in terms of x and ». His classification of all
solutions of (2.1), (2.2) can be carried out more efficiently today by means of a
phase-plane analysis of (2.1). The Bernoullis and Euler had, however, con-
structed the tools necessary to pose the governing equations in the form (2.1).)
In his treatment of boundary value problems Euler studied the process of
buckling, in which the trivial solution 8 = 0, characterizing a straight config-
uration, loses its stability at a critical value of the parameter A, from which
there bifurcates a family of nontrivial solutions. He gave a rigorous description
of the role of the linearization of (2.1), namely

(2.3) (BY') + Ay =0,

in the analysis of (2.1). Fortunately Euler left some unresolved issues for his
successors: He did not treat boundary value problems in which A was not
prescribed and he did not correlate qualitative properties of solutions with the
bifurcating branches on which they lay. One measure of his contribution is that
to this day engineers have worked almost exclusively with linearized equations
equivalent to (2.3).

It was apparently Saalschiitz (1880) who first obtained closed-form solu-
tions of boundary value problems for (2.1) with B = const. in terms of Jacobi
elliptic functions. (Euler had effectively determined the qualitative properties
of these functions.) The use of these special functions was a mixed blessing for
elasticity: Elliptic functions furnished explicit solutions for well-set nonlinear
problems, but their very availability contributed to the suppression of “nonlin-
ear thinking”. (It was not until the middle of our century that workers in
continuum mechanics began to treat nonlinear problems with confidence.)
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Using these explicit solutions we can efficiently display the properties of
solutions of a boundary value problem for (2.1), say the problem in which

(2.4) 6(0) = 0=106'(1),

by means of a bifurcation diagram, Figure 2.5. The ordinate labeled 6
represents some convenient measure of the amplitude of the solution (e.g.,
6’(0)). Thus the A-axis represents the trivial solution. Any connected family of
pairs (A, @) satisfying (2.1), (2.4) is a branch of solution pairs of the problem.
There are a countable infinity of nontrivial solution branches bifurcating from
the trivial branch at (A,,0), k =0, 1,2,..., where A\, = (2k + 1)’>72B /4 is the
kth eigenvalue of (2.3) subject to boundary conditions of the form (2.4). Each
such branch is unbounded in the space R X C*([0, 1]) of solution pairs and
meets the trivial branch at only one point. On the kth branch 8 has exactly k
zeros on (0, 1), each of which is simple. (An account of the detailed properties
of the explicit solutions of (2.1), (2.4) oriented toward bifurcation theory is
given by Reiss (1969).)

6

FIGURE 2.5. Bifurcation diagram for (2. 1), (2.4).

Now we jump over the next seventy-five years, ignoring very important
contributions to bifurcation theory by Poincaré, Lyapunov, Schmidt, Lyuster-
nik, Shnirel’man, Krasnosel’skii, and others in order to describe the seminal
work of Kolodner (1955) on the bifurcated steady states of a rotating heavy
chain. In this problem the upper end s = 1 of the chain is held fixed and the
lower end s = 0 is left free. We seek steady states in which the chain lies fixed
in a plane rotating about the vertical through the uppcr support of the chain
with constant angular velocity w.

This problem is governed by the singular boundary value problem

(2.6) W+ Au(u? +52) 7 =0,
(2.7) u(0) =0 =u'(1)



270 S. S ANTMAN

where u is the horizontal component of the tension and A is proportional to w?,
This problem does not admit closed-form: solutions. Nevertheless, by cleverly
combining the shootmg method .with Sturmian theory, Kolodner gave a
detailed global description of “all b1furcat1ng branches (in terms of the nodal
propert1es of'u) and determined-the location of the branches.

“Kolodner’s beautlful results msplred others to try: his methods for different
| problems but- thelr Success was' limited. P1mbley (1962 1963) was’ able to treat
some related equatlons On’ the other hand, T recall that E. L. Reiss’ noted that
there was*no obvious’ way. ‘that Kolodner’s methods could-handle boundary
value problems for (2 1) especrally when Bi 1s not constant; whence (2. 1) does
not admit closed form solut1ons (The reason why Kolodner’s methods handle
(2.6), (2. 7), but not (2. l), Q@. 4) devolves upon the difference in mathematical
structure beétween the ‘nonlinear  terms sin @ of (2.1) and: w(u? 4+ 52)=1/2 of
(2.6).) The failure. of Kolodner’s global quahtatlve methods to. handle some
other apparently sitple problems’ stimulated a number of mathemat1c1ans
(most of whom were associated with New York Umvers1ty) to develop more
effective methods for treating large classes of bifurcation problems In this
enterprise another problem from nonlinear elastrclty, the axisymmetric buck-
ling of a circular plate under a pressure applied to its edge, has played a central
role. The plate theory employed was that of von Karman: Let A, representmg
the magmtude of the pressure, denote the ergenvalue parameter and u ‘denote
the unknown function in this theory. Let A, )\,, denote the e1genvalues of
the equations linearized about u = 0.

Friedrichs and Stoker (1941) used variational methods to show that every-
where on the bifurcating branch emanating from (A, 0), the function  has no
nodes. They showed that for any fixed value of A lying between A, and A, there
are exactly three solutions, one of which is the trivial solution. They also used
the method of (Lyapunov and) Schmidt to justify a perturbation expansion for
the nontrivial branch of solutions emanating from the lowest elgenvalue of the
linearized problem.

Keller, Keller and Reiss (1962) used the Poincaré shooting method to study
the same problem. They showed that a nontrivial branch of solutions bifur-
cates from each point (A(,0), (A},0),..., that near each bifurcation point the
branch lies to the right of the bifurcation point (as in Figure 2.5), and that on
the intersection of the branch emanating from (A, o) with a neighborhood of
(Akp), the function u has exactly k interior nodes. Reiss (1965) used similar
methods to study the buckling of a spherical cap.

Detailed global results for this problem were finally obtained by Wol-
kowisky (1967). He proved that for each A > A, there are at least k pairs of
nontrivial solution pairs (A, = u, 50, J = 0,...,k, with u; having exactly j internal
nodes. To do this he used Sturnnan theory to set up a solution operator for
each j < k and for each fixed A. He was then able to use the Schauder Fixed
Point Theorem to show that each operator has a fixed point with the requisite
nodal properties. Wolkowisky (1969) extended his methods to handle a family
of nonlinear Sturm-Liouville Problems. Wolkowisky’s work is beautiful and
clever. In retrospect, we may, however, observe that it does not say anything
about the connectivity of the solution pairs he found.
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At the same time Berger (1967a) and Berger and Fife (1968) studied the
semilinear system of partial differential equations governing the buckling of a
von Kérméan plate of any shape under-a planar system of loads of magnitude
A. This problem has a natural energy functional ¢. (I do not discuss these
papers separately because their structure makes it inconvenient to do so.)
Using the variational method of Lyusternik and Shnirel’'man, Berger and Fife
showed that on each energy surface {u: @(u) = R}, R € (0, ), there is a
countable family of distinct solution pairs. Moreover, they proved that exactly
one nontrivial branch can bifurcate from a simple eigenvalue and they ob-
tained partial results on the number of branches that can bifurcate from an
eigenvalue of multiplicity 2. (The delicate problem of correlating the number of
nontrivial solution branches emanating from an eigenvalue of the linearized
problem with the multiplicity of the eigenvalue is fundamental in bifurcation
‘theory. For variational problems Krasnosel’skii (1953) obtained the first results
(cf. Krasnosel’skii (1956), Chapter 4), Berger (1967b, 1969) announced gener-
alizations, and Bohme (1971), (1972) gave complete proofs along with some
fascinating counterexamples.) ‘

~In the period from 1955 to 1970 and beyond, Vorovich had been indepen-
dently developing a complete mathematical theory of boundary value problems
for plates and shells of the von Karman type. His results relied on functional-
analytic and topological techniques. Brief accounts of his contributions are
given by Trenogin and Yudovich (1974, pp. 36, 127). It appears that a number
of the results described above, ‘obtained by American mathematicians, were
found earlier by him. E.g, many of the results of Berger and Fife were
announced by Vorovich (1958) ‘According to Trenogin and Yudovich, Voro-
vich (1955) studied the local theory of the axisymmetric bucklmg of annular.
disks by the method of Lyapunov and Schmidt. (I have not been able to see a
copy of this paper.) It thus appears that this work ‘would hayve a clear-cut
priority over that of Keller, Keller and Reiss (1962), ‘were it not for the fact‘
that the latter work treats the troublesome smgulanty at the center of the plate '
The work of Vorov1ch (partrally surveyed in his papers (1969, 1970)) forms an
important chapter in the application of functional- -analytic and - topologlcal
methods to nonlinear problems of physics. Unfortunately, western scientists
with the sophrstlcatlon to appre01ate it seemed largely unaware of it. Conse-
_ quently it had no influence on the next and crucial step of the development of
global contmuat1on methods of b1furcat1on theory

Motivated pnmanly by the work of Kolodner. and of Wolkowisky and to a
lesser extent by .that of Berger and Fife, ‘Crandall - and. Rabinowitz (1970)
studied global behavior ‘of nonlinear Sturm-Liouyille problems of a-sort that-
includes :(2.1),:(2:4) ; and, (2.6),-(2.7).: They .developed - effective - methods - to
describe the nodal propertles of solutions. In place of the Schauder Fixed Point -
Theorem used by Wolkowisky, they employed: the Leray-Schauder degree. By
explortlng its invariance under homotopy, Rabinowitz (1970) was able to show.
that branches of solution pairs of nonlinear. Sturm-Liouville problems . enjoy
global connectivity and nodal properties'(to be described shortly). At the same
time Turner (1970) was able to:show that branches. of solution pairs of
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nonlinear integral equations with ‘oscillation; kernels: have- connected projec-
‘tions, on: the plane. of; parameter;: rand,; norm. (These; equations; have ' nodal
propertles generahzmg those.of Sturm-Llouvﬂle ‘problems.)
~The basic. parameter; used; by, Wolkomsky is the, eigenvalue: parameter :and
that used by Berger:and: iFifé sis: the; prescribed .value of a norm—hke energy
functional. If the bifurcating branches. are. know; to be curves, then it is natural
to- give - them an, intrinsic; parametnzauon Ingeneral, : however, . -bifurcating
. branches are merely connectedwThe approach of Crandall and Rabinowitz and
of Rabinowitz may: roughly be likened to one.that relies on what would, be a
natural parametrization for branches that are curves:;
» The global;ideas of. Rabinowitz .(1970) .were; sunphfled and generalized. by
: ,Rabmownz ( 1971) .Crandall and. Rabinowitz 1971y systematlzed and refined
the local theory of blfurcauon (Perhaps the most accessible source of these
results .is “the paper :of. Rabmowuz (1973)) The fundamental theorem of
Rab1now1tz (1971) is this: . cEEAY e

2. 8. THEOREM Let B be'a Banach space wzth norm || . Let L: B> B be
compact and linear. Let F: R X % — B be compact and continuous with F(\, u)
A _'— o(||ul]) as u - 0, unzformly for }\ m bounded mtervals Let S be the closure of
nontrlozal solutzon pazrs of R S RN

(29) - c u= NLu + F(A, u)
inR >< ‘J?) I f pis an ezgenvalue of odd algebrazc multtpltaty of the linearization
(2.10) - - o=plo

of (2.9), then S contains a maxzmal closed connected subset C( ;L) that contains
(1, 0). C(p) has at least one of the followzng wo propertzes ) C( n)is unbounded
in R X B; (ii) C(p) contains a point (v,0) where v is another eigenvalue of
2.10).

Using this theorem together with some results of Crandall and Rabinowitz
(1971) we can readily obtain a detailed global description of all bifurcating
branches of (2.1), (2.4). We sketch the details. We' integrate (2.1) tw1ce
accountmg for (2 4), to obtain

(2.11) 6(s) = )\fB(t) fsmﬁ(r)drdt

We take the Banach space of Theorem 2.8 to be C([0, 1]). By writing
sinf = @ + (sinf — @) in (2.11) we readily convert (2.11) to the form (2.9). A
simple application of the Arzela-Ascoli Theorem shows that the L and F
thereby induced have the requisite compactness. Moreover, the linear integral
equation corresponding to (2.10) is equivalent to (2.3) subject to boundary
conditions of the form (2.4). The Sturmian Theory says that the eigenvalues
Ao> Ay, of the linearized problem are simple, positive, and unbounded and
that they can be ordered thus: 0 <A, <A, <'--- with the eigenfunction y,
corresponding to A, having exactly k zeros on (0, 1), each of which is simple.
Now let § be the set of all functions 8 in C([0, 1]) satisfying (2.4) and having
exactly k + 1 zeros sa. s,.....s, on[0. 1. with0 =5, <5, < -+- <5, <1 and
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with 6°(s;) # 0 forj = 0, 1,...,k. g, is open in C([0, 1]) (but not in C([0, 1])).
A theorem of Crandall and Rabmowrtz (1971) says that if (A, 8) is a solution
of (2.11) lying close enough to (X, 0), then @ is approximated in C'([0,1]) by a
multiple of y,, whence §- € §,. We now assert that C(A,)\[R X {0}] C 8. If
not, there would be a (A, §) € CANR X {0}] with 8§ € d§,. But members
of 38, have double zeros. Thus 6 would satisfy an initial value problem for
(2.1) subJect to initial conditions of the form 6(o) =0 = 6’(o). The unique
solution of this problem is § =0, a contradiction. Since Y EC)), j=
0,1,2,..., the branch C(A,) cannot contain (A, 0) with / # k, for if so, there
would be a pair (A,0) in C(A,) N @(?\,)\[R X {0}]Cc§, NG = <. Thus
Theorem 2.8 implies that each branch C(A,) is unbounded in R X CY([0,1])
and that the nodal properties of 6 are preserved along each branch. Suitable
estimates (cf. Crandall and Rabmowrtz (1970)) show that the branches are
disposed as in Figure 2.5. .

While other global methods of blfurcatlon theory, such as the theory of
Lyusternik and Shnirel’man, can be applied to this problem, the methods of
Crandall -and Rabinowitz yield the most detailed . information about the
bifurcating branches. These same methods can handle Kolodner s problem (cf.
Stuart (1975)).

There have been numerous refinements of Theorem 2 8 Rab1now1tz (1970)
observed that the AL in (2.9) could be replaced with L(A). Ize (1976) and
Magnus:(1976) developed the treatment of ‘such operators. Dancer (1973)
treated problems in which the F in (2.9) is real analytic. Nussbaum (1975) and
McLeod and Turner (1976) developed methods to handle bifurcation problems
in which (2. 9) is replaced by an equation involving nondifferentiable operators.
Problems in which the hypotheses on the compactness of L and F in (2.9) are
replaced by weaker assumptions were analyzed by Stuart (1973), Toland
(1976), and - Alexander and Fltzpatnck (1979).- An: ‘extensive bibliography is
given by Alexander (1981). These theories have been' ‘applied by Antman and
Rosenfeld (1978) and Antman (1978) to other problems of nonlinear elasticity
(1nclud1ng theories for plates that do not suffer the manifold defects of von
Karman’s theory, not the least of which is thatihis: equations are not valid for
the large deformations studied in global analyses).

A generalization of the planar buckhng problem for a'rod under terminal
thrust, described by (2.1) and (2.4), is that of the spatial -buckling of a rod
under terminal thrust and twist. Greenhill- :(1883) : analyzed :his ineptly for-

mulated eigenvalue - problem for the lmeanzed equatlons for this ‘problem.
Properly formulated linear. boundary ‘value: problems for: the rod have nontriv-
ial ‘solutions when the’ pa1r (A of parameters lie' oniany of a countable
family of eigencurves. One might:expect :that- nontnvral ‘solution pairs- of
nonlinear versions of Greenhill’s problem lie on “two- dimensional sheets”. It
is clear that(the methods’of ‘Rabinowitz ‘can- be ‘applied to this problem: by
freezing one of the parameters. But it is also" clear that :the resulting informa-
tion would be unsausfactonly 1ncomplete ;E.g.;one could show that the
nontrivial solution pairs lie on unions of one-dimensional connected sets, but
could not assert how these one-drmensmnal connected sets are attached. To
circumvent this difficulty Alexander and Antman (1981) used the theory of
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éech"cohomOlogy”to’ obtain easily verifiable conditions ensuring that bifurcat-

‘ing from a given point on an eigensurface of an n-parameter problem is a
connected ls‘eg of}so‘l'utionf pairs each. point of which has Lebesgue dimension
> n. (Related ,ré'si‘ll_t*s‘;ﬁh.avq,_;bcen,; obtained. by : Fitzpatrick, - Massabd  and
Pejsachowicz (1983).) This theory, a ‘natural generalization of that of Rabino-
witz, was : then applied; to..treat: general nonlinear" analogs of Greenhill’s
problem, for which it was expressly designed; by Antman and Kenney (198 1)..

Euler (1780) formulated the problem for: the buckling of:a column under its
own weight and’ computed the lowest: buckling load for a uniform. column.
Oblivious of: this work; Greenhill ( 1881): used. available: results on Bessel
functions to compute the same buckling:load. : Despite his’ advantage of one
century of scientific. progress,. Greenhill’s. formulation: was inferior:to that of
Euler in precision, method;: and insight.-Moreover,: Gréenhill must’ suffer: the
posthumous embarrassment of having computed a buckling load less accurate
than Euler’s. (Cf. Truesdell (1960, p.363).) . i

If the column is not uniform, then the mass density per unit:length may be
regarded as an eigenvalu€ parameter, which is infini ¢-dimensional.’ Alexander
and ' Antman- (1983) extended their results’ of 1981: for ‘a" finite number. of
parameters to handle this case, and then used the resulting theory to obtain a
detailed global analysis of this buckling problem.

3. The peculiarities of nonlinear elasticity.: To describe other influences of
nonlinear elasticity on analysis, it is first necessary to describe the mathemati-
cal structure of nonlinear elasticity. - . . ) S , o

A material point of a body may be identified with the position x it occupies
in a reference configuration of the body; the body itself may then be identified
with the region @ it occupies in this reference configuration. The position of
material point x at time ¢ is denoted p(x, t). It is taken to be an element of the
Euclidean 3-space E°. The theory of continuum mechanics yields a set of
differential equations for p. that reflect the mechanical properties of  and the
environment in which it is placed. , .

It is clear to anyone who has observed the effect of spiked shoes on a
wooden floor that force intensity per unit area is a more useful variable for
describing deformations than force itself. If x is a material point in the interior
of a body £ undergoing a motion p and if n is a unit vector, then the intensity
of contact force at x per unit reference area of the plane {y € Q: (y — x) - n
= 0} exerted by the material of {y € Q: (y — x) - n =0} on that of {y € Q:
(¥ — x) - n <0} at time ¢ has the form I(x, t)n, where T(x, t) is a tensor, i.e.,
a linear transformation from E3 to itself (called the first Piola-Kirchhoff stress
tensor at (x, t)). (This representation for the contact force was discovered by
Cauchy.) The inner-product space of these tensors is denoted £. Under
favorable conditions of regularity, the requirement that the resultant force on
each part of a body equal the time rate of change of linear momentum of that

part yields the equation of motion

(3.1) V- -T*+f=p—.
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Here v - denotes the divergence operator (with-respect to x), the asterisk
denotes transpose; f(x, t) represents the given force per unit reference volume
at (x, t), and p(x) is the given mass density at x in the reference configuration.
Mechanical properties of materials are characterized by relations between
T(x, t) and the history of p up to time ¢ in a neighborhood of x. E.g., we can
characterize the mechanical response of a rubber band by giving an expression
for the force per unit area needed to effect a given change of length. The
material at x is elastic if there is a function S such that

(32) ~ T(x,1) = S(%;i(x, t),x).

Here 9p/dx represents the derivative of p. (It is the linear transformation
whose matrix consists of the derivatives of the components of p with respect to
the components of x.) Equation (3.2) specifically prevents the material from
exhibiting viscous (frictional) effects, which could be accounted for.by allowing
S to depend on the velocity gradient 9°p/9xdt as well. Since S depends only
on the present value of 9p/dx, no account is taken of the influence of the past
history of the deformation on the present value of the stress. The actual form
of (3.2) must be specialized somewhat to ‘ensure that material properties are
unaffected by rigid motions. The requirement that the resultant torque on each
part of a body equal the time rate of change of angular momentum of that part
yields a relation that the use of (3. reducesto '

33 | T( ax) ~ )T
We account for this condition by requirir‘lgvthe: function .S to.satisfy -
6o 86,06 =656,

If we now substitute (3.2) into (3.1), we 'Qb_“tainfaiquafsiliﬁear’ system of partial

i{dén,t:icyalilj‘f‘_fo’,r‘ all tensors G with a posmve determinant.

differential equations for p, which we can supplement with initial and boundary

conditions. What distinguishes this system from such systems in general, such

as those describing g:lectromagnc;tip:ef;‘fec;_s_‘_in:r»igid medid?;{l“he most obvious
answer is that the unknown p has direct geometric significance: It describes a

class of mappings of regions of E? into E?. Consequently, continuum mecha-
nics has within it the richness and complexity of the geometry of E°. This
geometry is a fundamental source of difficulty for mechanics. E.g., since p(-, ?)

describes the deformation of a material body,werequlre that it be. one-to-one

so that two distinct material points cannot simultaneously occupy the same
point in space. But this requirement of injectivity is a global restriction on the
function p, which is, otherwise described  locally by -(3.1), .(3.2), and side

conditions. Techniques capable of handiing the injectivity of p would doubtless

yield solutions of major unsolved problems of geometry. Moreover, the serious
“onsideration of the physical aspects of this question- would require the

prescription of a strategy for stating boundary conditions'that are to hold if

two distinct parts of the boundary come into contact. o

" These difficulties force us to contemplate the more modest requirement that
p(-, t) preserve orientation, which is ‘equivalent to the requirement that the
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local ratio of volume in the: configuration at time ¢ to that of the reference
volume be everywhere positive. If p(-, t) is continuously differentiable, then
this condition is expressed by

(3.5) det(3p/dx) > 0.
This of - course, is,_a- purely local . restriction. We, ~can incorporate -it  into
initial- boundary value problems in a'natural v way by restnctmg S(-,;x) to

Ge e* —(GEE det G 3 0}"
and by requlrmg that * - ° SR ke R
(3.7). |S(G x)]—»oo asdetG—>O

Thus the v101at10n of (3 5) would be s1gnaled by the fa1lure of ptobea regular
solutron of (3 1), (3 2) o

" The modern theory of drfferentral equat1ons tells us that it is foolhardy to
seek classrcal solutlons of problems for (3.1), (3. 2) because ® there may not be
any, and (n) even if they exist, it is easier to. find them by seekmg solut1ons ina
larger class of functions and then provmg that such solut1ons are, necessanly
smoother than other members of the class. In partlcular ‘the avarlable theory
suggests that to solve a boundary value problem for the statrc version of (3.1),
(3.2) (in which p is 1ndependent of t), one should flrst pose the problem in a
weak form and then seek solutions i ma function space like the Sobolev space
W4(Q). (The actual space chosen is dictated by the form of S(G, x) for large
| G|.) If x = p(x) belongs to such a space, then (3.5) should be relaxed to hold
almost everywhere. But in this case we might have difficulty in. defining
det(dp/dx) because this is the sum of products of derivatives of p.

A more serious problem is that the set of all p’s satisfying (3.5) is not
convex. (If @ is not simply-connected, this set may even consist of a countable
disjoint union of nonconvex sets.) Thus the large body of results of nonlinear
analysis concerned with convex sets is not readlly available to handle problems
of nonlinear elasticity.

It is clear that both the mechanical response of an elastic material and the
mathematical classification of the system (3.1), (3.2) devolve excluswely on the
form of S. As a primitive requirement on S we might demand that pulling a
specimen of material in one direction results in a lengthening rather than a
shortening of the material in that direction. It is not obvious how to translate
this requirement into a precise and physically valid mathematical statement
because there are different kinds of stresses that can measure the amount of
pull, there are different kinds of strains to measure the elongation, and the
pulling produces not only an elongation in the direction of pull, but also
contractions in the transverse directions. One might be led by mathematical
optumsm to propose that S(-, x) be strictly monotone in the sense that

e8 [S(G + H,x) = (G, x)]: H>0.¥G
aan‘ . o : o
69 SARINS
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Here “:” represents the inner product on the space of tensors. If S(-, x) 1s
dlfferentrable then‘a shghtly stronger restriction is that . S

(3. 10) (G x):H>0 VG

subject to (3.9). If S(-, x) is everywhere defined (1 e., if (3 5)is 1gnored) and if
S(-, x) satisfies (3.8), (3.9) and suitable growth conditions, then the analysis of
boundary value problems for the static version of (3.1), (3.2) isin a relatively
good state: Weak solutions exist, are unique, and possess certain regularity
properties (cf. Giaquinta (1983) and Giusti (1983)). The apparent virtue of
yielding uniqueness is actually fatal for (3.8) and (3.9) because it means that
however thin a rod is and however large the thrust applied to it is, it can never
buckle. One of the main motivations for suffering the difficulties of nonlinear
elasticity is to be able to describe such buckling phenomena.

If S(-, x) is defined only on £, then another objection to (3.8) and (3.9)
arises: If S simultaneously satisfies (3.7)-(3.9), then the nonconvexity of g*
would require S to have very special, indeed pathological forms. In fact,
S(-, x) could not be the gradient of a scalar ®(-, x) on £ with ®(F, x) — o0
as det F - 0. (Other serious objectrons to (3.8) and (3.9) are discussed by Ball
(19770).)

The easiest way to allow boundary value problems for static versions to
admit multiple solutions is.to let S depend on p as well as dp/dx, while (3. 8)
and (3.9) still hold The resultmg equations can be handled by the theory of
pseudo- or serm-monotone operators But thrs adjustment would imply that the
material properties of the body would depend upon its posmon and would
thus be physically unacceptable SRR

A condition weaker than (3.8), (3 9) 1s (the stnct form of) the strong ellzptzczty
condition: (3.8) holds )

3.11) o 'V H of rank 1.

df Sis d1fferent1ab1e a slightly stronger version of thlS cond1t10n is that (3 10)
holds for (3.11).) This condition does ensure that an elongation accompames a
pull and that (3 1), (32) is hyperbohc "This means that (3. 1), (3.2) can have
solutions’ w1th a full range of wave-like behavior. Moreover, ‘the requirements
that (3.8), (3.11) hold, that det G >0, and that| S(G, x) |- oo as det G.—.0 are
- compatible,‘because-the; restriction {(3.8) to -hold just for -tensors of ‘rank -1
perfectly matches the:fact.that det G is an ‘affine function of each’of its entries
when the “other-entries ‘are held-fixed.: (Despite :these virtues of the strong
ellipticity condltron Ericksen ( 1983) has made a persuasive case that it does
not capture effects observed in, certam real crystalline solids. Thus-the strong
e111pt1c1ty condltlon should not be regarded as umversally vahd )

"“The theory of strongly elhptlc, quasﬂmear systems of partial differential
;equatlons is” unfortunately in*a’ pnrmtlve ‘staté.’ By embracmg the strong
ellipticity condrtlon ‘as ajreasonable restnctron for clastic materials, we might
seem to retard the rafé of progress in elastlclty 16 ‘that of such systems. In fact,
as we observe in the next sectlon the joining of these two disciplines has led to
New progress both'in the’ theory of quasﬂlnear elliptic systems and in other
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fields of analysis. Despite its peculiarities, nonlinear elasticity merits the
attention of analysts because it is the most accessible physical theory descnbed

by quasilinear systems.
A detailed discussion of the questions sketched in this section is given by

Ball (1977b) and Antman (1983)

4. Calculus of variations. Weak convergence If there isa functlon fI) B+ - R
‘ such that -

4.1) 86X = a—(D(G, x),
then the material of € is said to be hyperelastic. 1f (4.1) holds, if f=0 (for

s1mphc1ty) and if p is independent of ¢, then (3. 1) (3 2) is equ1valent to the
Euler-Lagrange equat1ons for the functional

(4.2) . P HfCI)(——R(x), x) dv(x)

where dv is the differential volume. We may then contemplate studying
boundary value problems for (3 1), (3.2) by the direct methods of the calculus
of variations. In this case a sufficiently smooth minimizer of (4.2) satisfying
appropriate side conditions would be a solut1on of a boundary value problem
for (3.1), (3.2). .

Ball (1977a, b) showed the existence of a minimizer of (4.2) in spaces hke the
Sobolev space Wy-9(Q) by adapting the deep, direct methods of Morrey (1952,
1966) to handle the difficulties associated with (3.5)—(3.7). In this process, Ball
introduced important new ideas into the calculus of variations. These ideas in
turn inspired further developments in other areas of analysis.

Recall that ®(-, x) defined on £ is convex if

(4.3) ®(AG + (1 —N)H, x) <AO(G,x) + (1 — AN)®(H, x)
' VAE[0,1],VG
and '

(4.4) VH.

If the inequality of (4.3) is replaced by a strict inequality, if A is restricted to
(0, 1), and if (4.1) holds, then this modified version of (4.3), (4.4) is equivalent
to (3.8), (3.9). If ®(-, x) is defined only on £, then we may say that ®(-, x) is
convex on 27 if the restriction of ® to each closed line segment of £ is convex.
®(-, x) is said to satisfy the (generalized) Legendre-Hadamard condition on £+
if (4.3) holds

(4.5) V H of rank 1 for which the line segment joining G and H lies in £ .

(If the inequality of (4.3) is replaced by a strict inequality, if A is restricted to
(0, 1), and if (4.1) holds, then this modified version of (4.3), (4.5) is equivalent
to (3.8), (3.11).) Let 9N be an open subset of £. In the terminology of Morrey
(1952, 1966), ®(-, x) is said to be strongly quasiconvex on O if

(4.6) /I)Q(G+g—‘y‘(y),x) do(y) = 0(G, x)o(D)
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VG €M, V bounded, open D € E?, and Vu € C°(D). for which G+
du(y)/dy € O when y € D. Here v is the volume. (Carefully note the
arguments in the integrand of (4.6).) Using this condition, Morrey established
the existence of minimizers for functionals of the form (4.2) on Sobolev spaces
when ®(-, x) is strongly quasiconvex on £. This remarkable result was the first
to give promise of treating quasilinear elliptic systems of the sort that arise in
the theory of elasticity. Morrey’s theory is incapable of handling (3. 5) and
(3.7), however.

To construct a theory without these defects, Ball introduced the concept of
polyconvexity. Let G* denote the tensor of cofactors of G. (If G is invertible,
then Cramer’s rule says that G* = (det G)(G~')* where the star denotes the
transpose.) ®(-, x) is said to be polyconvex on £7 if there is a convex function
¥(,:, -, x)on B X £ X (0, o0) such that

(4.7) o ®(G, x) = ‘I'(G, G*,detG, x).

Note that the domain of ¥(-,-, -, x) is a half-space, whereas that of ®(-, x) is
not even convex. The following chain of 1mp11cat10ns holds:

{<I>( x) is convex on £+
(4.8) . = {®(-, x) is polyconvex on et } )
70 ={®(-, x) is strongly quasiconvex on A
“S{0(-, x) sat1sf1es the Legendre—Hadamard cond1t10n onf*}.

The first two 1mphcat10ns found by Ball, are not equivalences. It is not known
whether the last implication, found by Morrey, is an equivalence. Ball showed
that the assumptlon of polyconvex1ty is'not so severe as to’preclude multiple
solutlons of the’ ethbnum equatlons ‘Moréover, he showed that a vanety of
accepted models of elastic response can be characterized by polyconvex ®’s’
To apprec1ate the mathematical unportance of the notion of polyconvemty
‘and the supportmg 1deas of weak’ convergence let us recall the basic theorem of .
the calculus of vanatlons whmh can be traced back to Welerstrass

)

" a9. THEOREM A sequentzally weakly Iower semzcontmuous functional on a
_bounded weakly closed nanempty subset of a reﬂexwe ‘Banach space attains its
mmzmum there

(A proof 1s glven by Vamberg (1956) €. g) A funct10na1 s sequentzally
: weakly lower semtcontmuous 1f

(4.10)

Here the half arrow denotes weak convergence ‘on‘the Banach space to which
the domain of (¢" belongs Ava11able .theorems ensuring - that functionals .¢
satisfy (4.10) rely on certain convex1ty propertles of .

To study :the sequent1a1 ‘weak lower :semicontinuity -of (4.2) on a subset of
w9(Q) with ¢ > 1 when ®(-, 'x) is polyconvex on £F, we need to know the
behavior of the sequences (apk/ax)>< and det(dp,/9x) as p, — p in Wh9(Q).
That this behavior can be easily characterized-and that ¥(-, -, -, x) is convex
are the underlying mathematical justifications of polyconvexity. Among the

q>(u) < liminf @(u,), aswu,—u.
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basic results on weak convergence that Ball obtained are the following:

411 T Lot R be comimns, .l L, e

@.12). .. f;é( 2 () + 55 (1)) dolx) = -fsf( 3 ()] do(x),
for all p € C'(@) and for Gl w € C*(R);, then $(G) must be an affine function
Of(G, Gx ,det YG).z S B AL RIS A
. 4.13. THEOREM. Let ¢ = 1'and C.= 0. Let ¢:-; £ — R be continuous and satisfy
|6(G)|< C(1 + | GI"). If the function WLQ) D p > ¢(0p(+)/9x) € LY(Q) is
continuous from the weak topology of Wha(Q) to the weak topology of L), i.e,
(4.142) ¢(ﬂ()) —‘¢(a—p()) in LY(Q) aspy—p in WH(Q),
then ¢ is a null Lagrangian.. . - -

F. Murat pointed out' to me that there is a more convenient variant of this

theorem in which the weak topology of L' is replaced with the pseudo-topology
of distributions, or equivalently, with the vague topology of measures, in which

case (4.14a) is fep}aced w1th | |
(@), o 22 (0)#0x) o) = o ) ¥lx) o)

cR e VY ED(R) aspy—pin WH(Q).

- These results show. that those ¢’s satisfying the hypotheses of Theorem 4.13
are exactly the functions of G that appear in the arguments of ¥ in (4.7). To
show that these functions ¢ actually satisfy the hypotheses of ‘Theorem 4.13 for
suitable g, Ball exploited the fact that both (3p/ 9x)> and det(dp/dx) can be
written . as divergences and. can.thereby be given meaning in the sense of
distributions.- These results and the convexity of ¥(-, -, -, x) enabled Ball to
invoke a general lower semicontinuity theorem of Ekeland and Temam (1972)
to show that (4.2) is minimized when ¥ satisfies suitable growth conditions.
Since an incompressible material is characterized by the constraint det(3p/ 0x)
= 1, Ball was able to use his apparatus to minimize a corresponding energy for
such materials. Technical difficulties with (3.5) and (3.7) have so far prevented
the appearance of a proof asserting that these minimizers are weak solutions of
the Euler-Lagrange equations. Ball (1980, 1982) has nevertheless obtained a
variety of regularity results that illuminatg the hypotheses we have discussed.

" In summary, Ball was the first and only one to make progress toward an
effective global existence theory for the partial differential equations of elasto-
statics under physically reasonable’ assumptions on the material response.
(There are detailed global results for ordinary differential equations of elastic-
ity, detailed local results for three-dimensional static and dynamic problems,
and global results for static problems in which the models used do not account
for the characteristic difficulties discussed in §3.) Ball’s work on these. prob-
lems contributed significantly to the methods of the calculus of variations and
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of quasilinear systems. His treatment: .of ;problems of weak convergence of
composite functions inspired important and useful developments, .which we
now discuss. _

A basic method for demonstrattng the emstence of solutions of nonlinear
partial differential equations is to ‘construct solutions to a sequence of ap-
proximating problems and then to use theorems on weak compactness in ways
that exploit the structure of the nonlinear operators in order to show that a
subsequence of the approximating solutions converges to a solution of the
actual problem. Such methods were intensively cultivated in the 1960s and
1970’s. (Cf. Lions (1969).) An important role in this development was played
by the theory of operators of monotone type. Although these methods enjoyed
great success, there were many problems that proved to be resistant to them.
One difficulty hinged on the lack of effective characterizations of weak limits
of composite functions. In the mid 1970’s Murat and Tartar began to study
weak convergence with the intent of developmg methods capable of handhng
otherwise intractable problems.

To appreciate their task, let us first consider a classical result. Let & be an
open subset of RY. Letu" = (uf,...,u nyand o" = (vf,...,0 %) be vector-valued
distributions over Q: u", 0" € (6D (SZ))N Suppose that {u"} is confined to a
bounded set of (W‘ 2(9))" that {0"} is confined to a bounded set of
(L*(Q), and that 4" —u and v" =0 in (L*(Q))". Then the compact embed-
dmg theorem of Relhch and Kondrashov 1mphes that

(4. 15) 2 P! — Z u v 1n 6D’(Q)
The most prumttve generahzauon of thlS theorem 1nsp1red by problems of
homogemzatlon, IS o o G che e et ol R

'4.16. D1IV-CURL THEOREM (MURAT (1978)) Let u” v e (GD'(Q))N let

Bv Lo
{2 dup . 3oy "j—l N},

Vbe confmed to bounded sets of LZ(Q) and let u'—u and v —‘o in (Lz(ﬂ))N
Then (4. 15) holds (even though ujvl,.say,- _need not converge weakly to u,v, in

V@) e T

‘A companson of the hypotheses. of Theorem 4 16 w1th those of the precedmg
paragraph ‘shows why J.-L.’ LlOIlS termed the new theory “ Compensated

Compactness”.
The first set of results, contalmng Theorern 4. 16 were obtamed by Murat

and Tartar in, 1974 In.1975,. Ball showed Tartar hrs results on vanatronal
problems from elastlclty Murat and Tartar then reahzed that c_o_rnpensated
compactness could bé expanded mto a far ncher theory capable of subsuming
Ball’s results. Included in this theory are major extensions of Theorem 4.16 to
account for far more general complementary conditions on u" and v" and to
account for other nonlinear functlons of u and v besrdes the1r scalar product

(Cf. Murat (1981) Tartar (1979).) -
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A powerful tool in the construction of a unified theory was the following
result of Tartar (1979), based on 'idegs,of L: C.:Young ‘and McShane. -

4.17. THEO;(EM LetK C RM;,\Q C RN be bounded and open. Let fRM — R be
continuous, Let u,: & — R™ be such that u,(x) € K for almost all x in Q. Then
there exists a subsequence {u,) of (u,) (independent of f) and a family of

probability measures {v,, x € Q) with supp ', C K such thai .~
(@18) () 2 FC)  mL(@) with F(x) = [ (D)
Conversely, if » has these properties, then there is a seqiience u,: @ -5 R™ with
u,(x) €K for almost all x in Q such that (4. 18) holds for all continuous f:

" A corollary of this resillt, suggesting the range of its usefulness, is-

4.19. COROLLARY. Let u,~u in L®(Q). Then u,, = u strongly in LP(Q) for
P € (1, 00) if and only if v, is the Dirac delta 8¢ x) supported at u(x).
* Tartar (1979) applied compensated compactness to treat first-order nonlin-
ear hyperbolic conservation laws by using entropy conditions. Tartar was well
aware that the results he obtained were by then classical: The importance of
his work lie in the novelty of his method, a method with promise for treating
more recalcitrant problems. This promise was recently realized in the work of
DiPerna (1983, 1984), who obtained new existence results for Cauchy problems
for second-order systems of conservation laws for large data. DiPerna also
obtained the first convergence theorem for finite difference approximations of
the solutions of such systems. We note that such systems describe not only gas
dynamics, but also one-dimensional models of ‘nonlinear elasticity. Thus a
theory developed under the stimulus of one class of problems from nonlinear
elasticity has illuminated another class.

A practical virtue of the theory of compensated compactness is that it
- reduces the number of a priori estimates needed in a given proof. It thereby
yields proofs for problems where the estimates, formerly deemed crucial, are
not available. Besides in the references listed above, systematic presentations of
the theory and its applications, together with new developments have been
given by Dacorogna (1982) and Tartar (1983). It is of course too early to see
whether compensated compactness will turn out to have far reaching implica-
tions or to be a tool of limited utility. Even if the latter happens, its successes
to date are nevertheless of considerable importance.

5-1. Variational inequalities. Signorini (1959) posed the problem, now bear-
ing his name, that in simplest terms is to determine the displacements in a
heavy, linearly elastic body resting on a rigid, frictionless horizontal plane. The
essential difficulty of this problem is that the region of contact between the
body and the plane is not known a priori. It is conceivable that the contact set
could be especially complicated. ' S

Fichera (1964) was the first to study the existence and uniqueness of
solutions to this problem, which is nonlinear because position fields satisfying



THE INFLUENCE OF ELASTICITY ON ANALYSIS 283

the governing equatlons are subjected to a unilateral constraint that restricts
their values to lie in a half space. Now the position field for Signorini’s
problem (for a nonlinearly elastic material) may be characterized as the
minimizer p of the potential energy functional (cf. (4.2))

ap .
(5.1) | /;zd)(ax,x)dv fﬂpgk pdv
on the convex set
(5.2) K= {p:p(x) - k=0,x €0Q}.

Here k is the unit vector pointing in the-upward direction and g is the

acceleration of gravity.
To see the issues involved in this variational problem, we study its simplest
analog, namely to minimize the function

(5.3) K =[0,0] 2 ur>y(u) ER.

If y is continuously differentiable and has a minimum at v in X, then
(5.4) Y (0) =0 ifv>0, ¢(v)=0 ifo=0.
These restric;ions can be unified into a single statem'en,t‘

(5.5) - Y(v)- (w—v) > 0 vweX,

Wthh in turn can be readlly generahzed toa Banach space setting: we let ‘JC be
a closed convex set in a real Banach space & and let T: K > &*. T need not be
the gradient. of a scalar. Let ( 5 D be the pairing of 5* and &. (&* is the dual
space of &. ) Correspondmg ‘to (5 5) we seek a v € %K that satisfies. the
variational inequality . ST Y gt

(56) <T(u) W

Even when T is the gradient: of a functlonal (1) defmed on X, there may be
analytical advantages to seeking av satlsfymg (5.6) rather than minimizing ¢.

Fichera (1964) analyzed Signorini’s problem for linear elasticity by the direct
methods of the calculus:of variations, -for ‘which he refined some available
lower sermcontmulty theorems. He m1t1ated ‘the .delicate regularity theory
associated with determining the contact region and the reactions ((Lagrange
multipliers) supported there. Some of the abstract formalism for variational
problems on convex sets had been developed earlier in optimal control theory,
but this formalism did not:-deal with the regularity questions for part1a1
differential equatlons of the sort that arise in Signorini’s problem. - '

'G. Duvaut reported to me that he had heard Fichera present his analys1s of
Signorini’s problem at a:conference in- Bressanone Italy in 1965 and that on
his return to Paris, he had graduate students in solid:mechanics study" and
expound Fichera’s .work. Thus" Fichera’s methods were publicized among
mechanicians in the universities of Paris and throughout France. This dissemi-
nation of work on unilateral problems probably helped to establish the strong
French activity in treating other unilateral problems: (an activity in: ~which
Duvaut played a leadmg role. See the comments on applications below).

v>>0 VWE%
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- At-about .the same time, Stampacchia.(1964; 1965) confronted variational
inequalities like (5.6) in his study of regularity: of solutions of elliptic equations.
(The characterization of a weak form of a sub-solution leads to an inequality of
the form (5.6).) Over the next couple of years there was an intensive develop-
ment of the theory of variational mequahtres by Browder (1965, 1966),
Hartman and Stampacchia (1966), Lions and Stampacchla (1967), Lewy (1968),
Brezis (1968), Brezis and Stampacchia (1968);’ Lewy and Stampacchia (1969)
and others. The abstract theory culminated in the marriage of. ~variational
inequalities with pseudomonotone operators in the hands of Brezis (1968). Cf.
Lions (1969). Significant progress on the regularrty of solutions was made i in
the ‘works just- hsted But many aspects of thrs questron still remain to be
resolved S

-1t 1s not; clear to what, extent Frchera s work influenced that of these authors,
many of whom cited Fichera. (Cf. Fichera: (1972 §11).) At the. least, the
solution of Signorini’s problem stood for several years as the main concrete
application of the theory to Cclassical physrcs As such it gave promise that the
‘theory had 51gmflcance beyond 'the corifines of pure analysis.

This promise was soon realized. Numerous applications were made to a host
of free surface problems in such drverse f1elds as plasticity, fluid dynarmcs _
plasma physics, filtration, meltmg, etc. “These are described, along’ ‘'with exten-
sive bibliographies, in' the texts of Duvaut and Lions ( 1972), Baiocchi' and
Capelo (1978), Kinderlehrer and Stampacchla (1980) and Friedman (1983).
Indeed, the subject of vanatlonal inequalities now seems dominated by particu-
lar apphcatlons The analysrs of regularity of solutions, still the main source of
difficulty, is forced to accommodate the pecuharmes of each spemal class of
problems. :

An account of the many refinements in the treatment of Signorini’s problem
is given by Kinderlehrer (1981). Antman (1979, 1983) has used variational
inequalities to handle (3.5) for ordinary differential equations of nonlinear
elasticity by replacing it with a sequence of inequalities like det(3p/dx) = 1 /n
and then obtaining sharp enough estimates to show that the resulting sequence
of solutions converges to a solution whose Jacobian is positive. (Here again we
find that a theory developed under the stimulus of one class of problems from
elasticity has illuminated another class.) :

6. Other contributions. John (1961) studied the rotation and strain in a
deformable body with an eye toward justifying the validity of various plate
theories by means of suitable estimates. For this purpose he used major new
results on the Banach space BMO of functions of bounded mean’ oscillation
developed by John and Nirenberg (1961) expressly for his problem and for the
work of Moser (1961) on Harnack’s inequality. (John and Nirenberg named
BMO, which had appeared earlier in the study of conformal mappings.) BMO
filled a gap in a natural scaling of function spaces (cf. Fefferman (1971) and
Fefferman and Stein (1972)) and has since played a cntrcal role in modem
analysis.: '

AN Galerkm (1915) in studymg elastrc rods and plates mtroduced his pl‘OjeCtlon
method _generalizing that of Rayleigh and Ritz, which approximates solutions



THE INFLUENCE OF ELASTICITY ON ANALYSIS ‘ 285

of differential equations by sequences of solutions of finite-dimensional prob-
lems. The convergence of the method was demonstrated by Keldysh (1942) (cf.
Kantorovich and Krylov (1958) and Mikhlin (1966)). The method stimulated
advances in numerical and functional analysis. Indeed, many developments in
the theory of operators of monotone type (mentioned in §4) and in the theory
of variational inequalities rest on it.

The finite element method (cf. Oden (1972) and Ciarlet (1978)), introduced
by Courant (1943), is a version of Galerkin’s method, which is particularly
effective for the numerical treatment of boundary value problems. Its useful-
ness was not appreciated at that time. The method in a different guise was
rediscovered by Argyris (1954-1955) and by Turner, Clough, Martin and Topp
(1956). It was thereafter intensively cultivated by engineers interested in
structural mechanical problems of elasticity. (See Zienkiewicz (1973) for an
historical account of this development.) That the finite element in the form
used by engineers is but a specialization of Galerkin’s method was soon
recogmzed In the 1960’s mathematicians began a rigorous analysis of numeri-
cal errors for the method. According to Ciarlet (1976, pp. 106—107), on whose
assessments I am relying in this paragraph, Zlamal (1968) gave the first general
mathematical analysis of error in the finite element method. ‘The continuing
study of the method has spawned new developments in functional analysrs
especially with respect to function spaces.

In his local analysrs of buckling of elastrc structures Korter (1945) gave a
systematrc treatment of 1mperfect10n methods To apprecrate what these are,
we can wnte (2 9) in the even more compact form

(6.) CA0uw) =0 withf(1,0) =

In nnperfectlon studles the functron f is embedded ina one-parameter family
of functions with values’ f(}\ E, u) with f(}\ 0, u) = f(A, u) and f(A, g, O) #0 -
for € =# 0 In place of (6 1) we study the behav10r of solutions of

(62) e s (N e w).=

(An unperfecuon g can be mtroduced into (2 l) (2 4) by assurmng ‘that the
initial shape of the rod is not straight. & could be taken as ‘an amphtude of the
initial curvature.) The dependence of (A, u) on & can g1ve unportant msrghts
into the stabrhty of physrcal systems described by (6.2).- S
v The local analysrs of the generahzatlon of (6 2) obtained by allowmg £10'be
an n- tuple ‘of real numbers has’ been carried out by Thom ‘and Mather (cf.
Golubltsky and Guillemin " (1973), e. g) by usmg methods of real algebralc
geometry and resulted in catastrophe theory, or more generally, smgulanty
‘theory To the’ detriment of catastrophe theory, many of its' frrst apphcatlons
were directed to sociology rather than to'the elaboratio 1 of thé well-estabhshed
path cut by Koiter. The methods of singularity theory have recently,’however
succeeded in illuminating problems of elasticity. Moreover, the pecullantles 'of
well-posed problems of elasticity have begun to influence the development of
smgulanty theory. (Cf. Golubitsky and-Schaeffer (1979), e. 8.) uririoy i A

“ There are of course other areas in which the’ 1nfluence of elasticity has been
felt. The theory of quasilinear hyperbolic ‘systems’ "has ‘recéived 'much' of 'its
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inspiration from gas dynarmcs The nonlinear constitutive functions entering
such systems for elastic media may have quite a form quite different from that
for gases. An awareness of this fact is stimulating some new research directions
in the basic theory But 1t is premature to attempt an evaluat1on of the effect of
elast101ty : P , oplea e

7. Conclusnon The equatrons of nonhnear e1ast1c1ty are parametrlzed by the
'tensor-valued functron that gives the PlOla-Kll'Cthff stress as a functron of the
position gradlent Th1s functlon differs from materlal to matenal Thus in
nonhnear elastrcrty one studles a whole class of matenals generatmg a whole
class' of ‘nonlinear operators Thrs approach 1s m perfect accord ‘with the
phrlosophy of nonlinear operator theory.

~Nevertheless, the abstract theories for nonhnear operators that have sprung
up over the last twenty years have been largely mcapable of treatmg nonlinear
elastrclty Much of  their generahty was attamed in d1rect10ns irrelevant for
elasticity. Those seekmg to analyze the full equatrons of nonhnear elastlc1ty
had to develop their own operator theones w1th 1nsp1ratlon from the modern
abstract theories. As we. have seen th1s process has led to unportant develop-
’ments 1n pure analysrs o :

"The challenges offered by spec1f1c problems stlmulated maJor advances
There was no techmcal obstacle that would have prevented Rabinowitz’s
Theorem . from bemg proved say in 1934 by Leray ‘and’ Schauder. But
Rabmowrtz had the persprcac1ty to recogmze the need for his theorem and the
skill to surround it with a beautiful and useful theory ‘

A few years ago I was astounded to discover that some very eminent
analysts were not aware that one could easily write down the exact equations
for the large vibrations of an elastic string. This state of affairs was no doubt
due to failure of virtually every elementary book on partial differential
equations to produce an honest derivation of the wave equation. (The sole
exception known to me is the text of Weinberger (1965).) By some mathemati-
cal version of Gresham’s Law, the simple and convincing derivation of Euler
(1771) was driven out of circulation and replaced by baser derivations, which
are incompatible with the standards of precision demanded of modern analy-
sis.! |

As the material of §3 was meant to suggest, it is possible to present the
theory of nonlinear elasticity (and indeed the theory of continuum mechanics)
in a perfectly straightforward way, which proceeds inexorably from elementary
geometry and from basic physical principles to well-set initial-boundary value
problems. Nothing in the derivation need be incompatible with modern
advanced calculus; the reader need not sacrifice his right to the clarity he
would demand of mathematics. The role of nonlinear elasticity as an examplar
of such a comprehensible mathematical science is not the least of its contribu-
tions to analysis.

' There is unfortunately a voluminous and growing literature devoted to doing poorly what Euler
.did well. Compared to the crimes of contemporary authors of such works, those of Greenhill were
petty. It would help if this literature were confined to some newly founded journal, perhaps to be
called Regress:ons in Applied Mathematics.
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fields of analysis. Despite its peculiarities, nonlinear elasticity merits the
attention of analysts because it is the most accessible physical theory described

by quasilinear systems.
A detailed discussion of the questions sketched in this section is given by

Ball (1977b) and Antman (1983)

; 4. Calculus of varlatlons Weak convergence If there isa functlon fI) B+ - R
‘such that - .

@.1)  s(Gx) = (G x),
then the material of € is said to be hyperelastzc If (4 1) holds, if f 0 (for

simplicity), and if p is independent of ¢, then (3. 1) (3 2) is equ1valent to the
Euler-Lagrange equatlons for the functional

(4.2) | P Hf@(——g(x), x) dv(x)

where dv is the differential volume. We may then contemplate studying
boundary value problems for (3 1), (3.2) by the direct methods of the calculus
of variations. In this case a sufficiently smooth minimizer of (4.2) satisfying
appropriate side conditions would be a solut1on of a boundary value problem
for (3.1), (3.2).

Ball (1977a, b) showed the existence of a minimizer of (4.2) in spaces hke the
Sobolev space Wy-9(Q) by adapting the deep, direct methods of Morrey (1952,
1966) to handle the difficulties associated with (3.5)—(3.7). In this process, Ball
introduced important new ideas into the calculus of variations. These ideas in
turn inspired further developments in other areas of analysis.

Recall that ®(-, x) defined on £ is convex if

(4.3) ®(AG + (1 — AN)H, x) <AD(G, x) + (1 — A)®(H, x)
' vae[0,1],VvG

and

(4.4) VH.

If the inequality of (4.3) is replaced by a strict inequality, if A is restricted to
(0, 1), and if (4.1) holds, then this modified version of (4.3), (4.4) is equivalent
to (3.8), (3.9). If ®(-, x) is defined only on £, then we may say that ®(-, x) is
convex on £7 if the restriction of ® to each closed line segment of £ is convex.
(-, x) is said to satisfy the (generalized) Legendre-Hadamard condition on £+
if (4.3) holds

(4.5) V H of rank 1 for which the line segment joining G and H lies in £ .

(If the inequality of (4.3) is replaced by a strict inequality, if A is restricted to
(0, 1), and if (4.1) holds, then this modified version of (4.3), (4.5) is equivalent
to (3.8), (3.11).) Let 9N be an open subset of £. In the terminology of Morrey
(1952, 1966), ®(-, x) is said to be strongly quasiconvex on O if .

“8  [8(G+ 340, x] do(3) > @G, x)e(D)

e
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